MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrfun Structured version   Visualization version   GIF version

Theorem uhgrfun 26853
Description: The edge function of an undirected hypergraph is a function. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 15-Dec-2020.)
Hypothesis
Ref Expression
uhgrfun.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
uhgrfun (𝐺 ∈ UHGraph → Fun 𝐸)

Proof of Theorem uhgrfun
StepHypRef Expression
1 eqid 2823 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
2 uhgrfun.e . . 3 𝐸 = (iEdg‘𝐺)
31, 2uhgrf 26849 . 2 (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))
43ffund 6520 1 (𝐺 ∈ UHGraph → Fun 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  cdif 3935  c0 4293  𝒫 cpw 4541  {csn 4569  dom cdm 5557  Fun wfun 6351  cfv 6357  Vtxcvtx 26783  iEdgciedg 26784  UHGraphcuhgr 26843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-nul 5212
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-fv 6365  df-uhgr 26845
This theorem is referenced by:  lpvtx  26855  upgrle2  26892  uhgredgiedgb  26913  uhgriedg0edg0  26914  uhgrvtxedgiedgb  26923  edglnl  26930  numedglnl  26931  uhgr2edg  26992  ushgredgedg  27013  ushgredgedgloop  27015  0uhgrsubgr  27063  uhgrsubgrself  27064  subgruhgrfun  27066  subgruhgredgd  27068  subumgredg2  27069  subupgr  27071  uhgrspansubgrlem  27074  uhgrspansubgr  27075  uhgrspan1  27087  upgrreslem  27088  umgrreslem  27089  upgrres  27090  umgrres  27091  vtxduhgr0e  27262  vtxduhgrun  27267  vtxduhgrfiun  27268  finsumvtxdg2ssteplem1  27329  upgrewlkle2  27390  upgredginwlk  27419  wlkiswwlks1  27647  wlkiswwlksupgr2  27657  umgrwwlks2on  27738  vdn0conngrumgrv2  27977  eulerpathpr  28021  eulercrct  28023  lfuhgr  32366  loop1cycl  32386  umgr2cycllem  32389
  Copyright terms: Public domain W3C validator