MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrspan Structured version   Visualization version   GIF version

Theorem uhgrspan 27001
Description: A spanning subgraph 𝑆 of a hypergraph 𝐺 is a hypergraph. (Contributed by AV, 11-Oct-2020.) (Proof shortened by AV, 18-Nov-2020.)
Hypotheses
Ref Expression
uhgrspan.v 𝑉 = (Vtx‘𝐺)
uhgrspan.e 𝐸 = (iEdg‘𝐺)
uhgrspan.s (𝜑𝑆𝑊)
uhgrspan.q (𝜑 → (Vtx‘𝑆) = 𝑉)
uhgrspan.r (𝜑 → (iEdg‘𝑆) = (𝐸𝐴))
uhgrspan.g (𝜑𝐺 ∈ UHGraph)
Assertion
Ref Expression
uhgrspan (𝜑𝑆 ∈ UHGraph)

Proof of Theorem uhgrspan
StepHypRef Expression
1 uhgrspan.g . 2 (𝜑𝐺 ∈ UHGraph)
2 uhgrspan.v . . 3 𝑉 = (Vtx‘𝐺)
3 uhgrspan.e . . 3 𝐸 = (iEdg‘𝐺)
4 uhgrspan.s . . 3 (𝜑𝑆𝑊)
5 uhgrspan.q . . 3 (𝜑 → (Vtx‘𝑆) = 𝑉)
6 uhgrspan.r . . 3 (𝜑 → (iEdg‘𝑆) = (𝐸𝐴))
72, 3, 4, 5, 6, 1uhgrspansubgr 27000 . 2 (𝜑𝑆 SubGraph 𝐺)
8 subuhgr 26995 . 2 ((𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺) → 𝑆 ∈ UHGraph)
91, 7, 8syl2anc 584 1 (𝜑𝑆 ∈ UHGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1528  wcel 2105   class class class wbr 5057  cres 5550  cfv 6348  Vtxcvtx 26708  iEdgciedg 26709  UHGraphcuhgr 26768   SubGraph csubgr 26976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-fv 6356  df-edg 26760  df-uhgr 26770  df-subgr 26977
This theorem is referenced by:  uhgrspanop  27005
  Copyright terms: Public domain W3C validator