MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrspansubgr Structured version   Visualization version   GIF version

Theorem uhgrspansubgr 27076
Description: A spanning subgraph 𝑆 of a hypergraph 𝐺 is actually a subgraph of 𝐺. A subgraph 𝑆 of a graph 𝐺 which has the same vertices as 𝐺 and is obtained by removing some edges of 𝐺 is called a spanning subgraph (see section I.1 in [Bollobas] p. 2 and section 1.1 in [Diestel] p. 4). Formally, the edges are "removed" by restricting the edge function of the original graph by an arbitrary class (which actually needs not to be a subset of the domain of the edge function). (Contributed by AV, 18-Nov-2020.) (Proof shortened by AV, 21-Nov-2020.)
Hypotheses
Ref Expression
uhgrspan.v 𝑉 = (Vtx‘𝐺)
uhgrspan.e 𝐸 = (iEdg‘𝐺)
uhgrspan.s (𝜑𝑆𝑊)
uhgrspan.q (𝜑 → (Vtx‘𝑆) = 𝑉)
uhgrspan.r (𝜑 → (iEdg‘𝑆) = (𝐸𝐴))
uhgrspan.g (𝜑𝐺 ∈ UHGraph)
Assertion
Ref Expression
uhgrspansubgr (𝜑𝑆 SubGraph 𝐺)

Proof of Theorem uhgrspansubgr
StepHypRef Expression
1 ssid 3992 . . 3 (Vtx‘𝑆) ⊆ (Vtx‘𝑆)
2 uhgrspan.q . . 3 (𝜑 → (Vtx‘𝑆) = 𝑉)
31, 2sseqtrid 4022 . 2 (𝜑 → (Vtx‘𝑆) ⊆ 𝑉)
4 uhgrspan.r . . 3 (𝜑 → (iEdg‘𝑆) = (𝐸𝐴))
5 resss 5881 . . 3 (𝐸𝐴) ⊆ 𝐸
64, 5eqsstrdi 4024 . 2 (𝜑 → (iEdg‘𝑆) ⊆ 𝐸)
7 uhgrspan.v . . 3 𝑉 = (Vtx‘𝐺)
8 uhgrspan.e . . 3 𝐸 = (iEdg‘𝐺)
9 uhgrspan.s . . 3 (𝜑𝑆𝑊)
10 uhgrspan.g . . 3 (𝜑𝐺 ∈ UHGraph)
117, 8, 9, 2, 4, 10uhgrspansubgrlem 27075 . 2 (𝜑 → (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))
128uhgrfun 26854 . . . 4 (𝐺 ∈ UHGraph → Fun 𝐸)
1310, 12syl 17 . . 3 (𝜑 → Fun 𝐸)
14 eqid 2824 . . . 4 (Vtx‘𝑆) = (Vtx‘𝑆)
15 eqid 2824 . . . 4 (iEdg‘𝑆) = (iEdg‘𝑆)
16 eqid 2824 . . . 4 (Edg‘𝑆) = (Edg‘𝑆)
1714, 7, 15, 8, 16issubgr2 27057 . . 3 ((𝐺 ∈ UHGraph ∧ Fun 𝐸𝑆𝑊) → (𝑆 SubGraph 𝐺 ↔ ((Vtx‘𝑆) ⊆ 𝑉 ∧ (iEdg‘𝑆) ⊆ 𝐸 ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))))
1810, 13, 9, 17syl3anc 1367 . 2 (𝜑 → (𝑆 SubGraph 𝐺 ↔ ((Vtx‘𝑆) ⊆ 𝑉 ∧ (iEdg‘𝑆) ⊆ 𝐸 ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))))
193, 6, 11, 18mpbir3and 1338 1 (𝜑𝑆 SubGraph 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  w3a 1083   = wceq 1536  wcel 2113  wss 3939  𝒫 cpw 4542   class class class wbr 5069  cres 5560  Fun wfun 6352  cfv 6358  Vtxcvtx 26784  iEdgciedg 26785  Edgcedg 26835  UHGraphcuhgr 26844   SubGraph csubgr 27052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-fv 6366  df-edg 26836  df-uhgr 26846  df-subgr 27053
This theorem is referenced by:  uhgrspan  27077  upgrspan  27078  umgrspan  27079  usgrspan  27080
  Copyright terms: Public domain W3C validator