MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrwkspth Structured version   Visualization version   GIF version

Theorem uhgrwkspth 26707
Description: Any walk of length 1 between two different vertices is a simple path. (Contributed by AV, 25-Jan-2021.) (Proof shortened by AV, 31-Oct-2021.)
Hypotheses
Ref Expression
uhgrwkspth.v 𝑉 = (Vtx‘𝐺)
uhgrwkspth.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
uhgrwkspth ((𝐺𝑊 ∧ (#‘𝐹) = 1 ∧ 𝐴𝐵) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃))

Proof of Theorem uhgrwkspth
StepHypRef Expression
1 simpl31 1162 . . . . . . . 8 ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) ∧ (𝐺𝑊 ∧ (#‘𝐹) = 1 ∧ 𝐴𝐵)) → 𝐹(Walks‘𝐺)𝑃)
2 uhgrwkspthlem1 26705 . . . . . . . . . . . . . 14 ((𝐹(Walks‘𝐺)𝑃 ∧ (#‘𝐹) = 1) → Fun 𝐹)
32expcom 450 . . . . . . . . . . . . 13 ((#‘𝐹) = 1 → (𝐹(Walks‘𝐺)𝑃 → Fun 𝐹))
433ad2ant2 1103 . . . . . . . . . . . 12 ((𝐺𝑊 ∧ (#‘𝐹) = 1 ∧ 𝐴𝐵) → (𝐹(Walks‘𝐺)𝑃 → Fun 𝐹))
54com12 32 . . . . . . . . . . 11 (𝐹(Walks‘𝐺)𝑃 → ((𝐺𝑊 ∧ (#‘𝐹) = 1 ∧ 𝐴𝐵) → Fun 𝐹))
653ad2ant1 1102 . . . . . . . . . 10 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵) → ((𝐺𝑊 ∧ (#‘𝐹) = 1 ∧ 𝐴𝐵) → Fun 𝐹))
763ad2ant3 1104 . . . . . . . . 9 (((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) → ((𝐺𝑊 ∧ (#‘𝐹) = 1 ∧ 𝐴𝐵) → Fun 𝐹))
87imp 444 . . . . . . . 8 ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) ∧ (𝐺𝑊 ∧ (#‘𝐹) = 1 ∧ 𝐴𝐵)) → Fun 𝐹)
9 istrl 26649 . . . . . . . 8 (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝐹))
101, 8, 9sylanbrc 699 . . . . . . 7 ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) ∧ (𝐺𝑊 ∧ (#‘𝐹) = 1 ∧ 𝐴𝐵)) → 𝐹(Trails‘𝐺)𝑃)
11 3simpc 1080 . . . . . . . . 9 ((𝐺𝑊 ∧ (#‘𝐹) = 1 ∧ 𝐴𝐵) → ((#‘𝐹) = 1 ∧ 𝐴𝐵))
1211adantl 481 . . . . . . . 8 ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) ∧ (𝐺𝑊 ∧ (#‘𝐹) = 1 ∧ 𝐴𝐵)) → ((#‘𝐹) = 1 ∧ 𝐴𝐵))
13 3simpc 1080 . . . . . . . . . 10 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵) → ((𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵))
14133ad2ant3 1104 . . . . . . . . 9 (((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) → ((𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵))
1514adantr 480 . . . . . . . 8 ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) ∧ (𝐺𝑊 ∧ (#‘𝐹) = 1 ∧ 𝐴𝐵)) → ((𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵))
16 uhgrwkspthlem2 26706 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃 ∧ ((#‘𝐹) = 1 ∧ 𝐴𝐵) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) → Fun 𝑃)
171, 12, 15, 16syl3anc 1366 . . . . . . 7 ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) ∧ (𝐺𝑊 ∧ (#‘𝐹) = 1 ∧ 𝐴𝐵)) → Fun 𝑃)
18 isspth 26676 . . . . . . 7 (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃))
1910, 17, 18sylanbrc 699 . . . . . 6 ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) ∧ (𝐺𝑊 ∧ (#‘𝐹) = 1 ∧ 𝐴𝐵)) → 𝐹(SPaths‘𝐺)𝑃)
20 3anass 1059 . . . . . 6 ((𝐹(SPaths‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵) ↔ (𝐹(SPaths‘𝐺)𝑃 ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)))
2119, 15, 20sylanbrc 699 . . . . 5 ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) ∧ (𝐺𝑊 ∧ (#‘𝐹) = 1 ∧ 𝐴𝐵)) → (𝐹(SPaths‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵))
22 3simpa 1078 . . . . . . 7 (((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
2322adantr 480 . . . . . 6 ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) ∧ (𝐺𝑊 ∧ (#‘𝐹) = 1 ∧ 𝐴𝐵)) → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
24 eqid 2651 . . . . . . 7 (Vtx‘𝐺) = (Vtx‘𝐺)
2524isspthonpth 26701 . . . . . 6 (((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(SPaths‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)))
2623, 25syl 17 . . . . 5 ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) ∧ (𝐺𝑊 ∧ (#‘𝐹) = 1 ∧ 𝐴𝐵)) → (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(SPaths‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)))
2721, 26mpbird 247 . . . 4 ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) ∧ (𝐺𝑊 ∧ (#‘𝐹) = 1 ∧ 𝐴𝐵)) → 𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃)
2827ex 449 . . 3 (((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) → ((𝐺𝑊 ∧ (#‘𝐹) = 1 ∧ 𝐴𝐵) → 𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃))
2924wlkonprop 26610 . . . 4 (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)))
30 3simpc 1080 . . . . 5 ((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))
31303anim1i 1267 . . . 4 (((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)))
3229, 31syl 17 . . 3 (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)))
3328, 32syl11 33 . 2 ((𝐺𝑊 ∧ (#‘𝐹) = 1 ∧ 𝐴𝐵) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃))
34 spthonpthon 26703 . . 3 (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃𝐹(𝐴(PathsOn‘𝐺)𝐵)𝑃)
35 pthontrlon 26699 . . 3 (𝐹(𝐴(PathsOn‘𝐺)𝐵)𝑃𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃)
36 trlsonwlkon 26662 . . 3 (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃)
3734, 35, 363syl 18 . 2 (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃)
3833, 37impbid1 215 1 ((𝐺𝑊 ∧ (#‘𝐹) = 1 ∧ 𝐴𝐵) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  Vcvv 3231   class class class wbr 4685  ccnv 5142  Fun wfun 5920  cfv 5926  (class class class)co 6690  0cc0 9974  1c1 9975  #chash 13157  Vtxcvtx 25919  Edgcedg 25984  Walkscwlks 26548  WalksOncwlkson 26549  Trailsctrls 26643  TrailsOnctrlson 26644  SPathscspths 26665  PathsOncpthson 26666  SPathsOncspthson 26667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ifp 1033  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-hash 13158  df-word 13331  df-concat 13333  df-s1 13334  df-s2 13639  df-wlks 26551  df-wlkson 26552  df-trls 26645  df-trlson 26646  df-pths 26668  df-spths 26669  df-pthson 26670  df-spthson 26671
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator