MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrwkspthlem2 Structured version   Visualization version   GIF version

Theorem uhgrwkspthlem2 27529
Description: Lemma 2 for uhgrwkspth 27530. (Contributed by AV, 25-Jan-2021.)
Assertion
Ref Expression
uhgrwkspthlem2 ((𝐹(Walks‘𝐺)𝑃 ∧ ((♯‘𝐹) = 1 ∧ 𝐴𝐵) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → Fun 𝑃)

Proof of Theorem uhgrwkspthlem2
StepHypRef Expression
1 eqid 2821 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
21wlkp 27392 . . 3 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
3 oveq2 7158 . . . . . . . . . . . . 13 ((♯‘𝐹) = 1 → (0...(♯‘𝐹)) = (0...1))
4 1e0p1 12134 . . . . . . . . . . . . . . 15 1 = (0 + 1)
54oveq2i 7161 . . . . . . . . . . . . . 14 (0...1) = (0...(0 + 1))
6 0z 11986 . . . . . . . . . . . . . . 15 0 ∈ ℤ
7 fzpr 12956 . . . . . . . . . . . . . . 15 (0 ∈ ℤ → (0...(0 + 1)) = {0, (0 + 1)})
86, 7ax-mp 5 . . . . . . . . . . . . . 14 (0...(0 + 1)) = {0, (0 + 1)}
9 0p1e1 11753 . . . . . . . . . . . . . . 15 (0 + 1) = 1
109preq2i 4666 . . . . . . . . . . . . . 14 {0, (0 + 1)} = {0, 1}
115, 8, 103eqtri 2848 . . . . . . . . . . . . 13 (0...1) = {0, 1}
123, 11syl6eq 2872 . . . . . . . . . . . 12 ((♯‘𝐹) = 1 → (0...(♯‘𝐹)) = {0, 1})
1312feq2d 6494 . . . . . . . . . . 11 ((♯‘𝐹) = 1 → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ↔ 𝑃:{0, 1}⟶(Vtx‘𝐺)))
1413adantr 483 . . . . . . . . . 10 (((♯‘𝐹) = 1 ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ↔ 𝑃:{0, 1}⟶(Vtx‘𝐺)))
15 simpl 485 . . . . . . . . . . . . 13 (((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → (𝑃‘0) = 𝐴)
16 simpr 487 . . . . . . . . . . . . 13 (((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → (𝑃‘(♯‘𝐹)) = 𝐵)
1715, 16neeq12d 3077 . . . . . . . . . . . 12 (((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → ((𝑃‘0) ≠ (𝑃‘(♯‘𝐹)) ↔ 𝐴𝐵))
1817bicomd 225 . . . . . . . . . . 11 (((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → (𝐴𝐵 ↔ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))))
19 fveq2 6664 . . . . . . . . . . . 12 ((♯‘𝐹) = 1 → (𝑃‘(♯‘𝐹)) = (𝑃‘1))
2019neeq2d 3076 . . . . . . . . . . 11 ((♯‘𝐹) = 1 → ((𝑃‘0) ≠ (𝑃‘(♯‘𝐹)) ↔ (𝑃‘0) ≠ (𝑃‘1)))
2118, 20sylan9bbr 513 . . . . . . . . . 10 (((♯‘𝐹) = 1 ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → (𝐴𝐵 ↔ (𝑃‘0) ≠ (𝑃‘1)))
2214, 21anbi12d 632 . . . . . . . . 9 (((♯‘𝐹) = 1 ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ 𝐴𝐵) ↔ (𝑃:{0, 1}⟶(Vtx‘𝐺) ∧ (𝑃‘0) ≠ (𝑃‘1))))
23 1z 12006 . . . . . . . . . . . 12 1 ∈ ℤ
24 fpr2g 6968 . . . . . . . . . . . 12 ((0 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑃:{0, 1}⟶(Vtx‘𝐺) ↔ ((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺) ∧ 𝑃 = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩})))
256, 23, 24mp2an 690 . . . . . . . . . . 11 (𝑃:{0, 1}⟶(Vtx‘𝐺) ↔ ((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺) ∧ 𝑃 = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩}))
26 funcnvs2 14269 . . . . . . . . . . . . . . . . 17 (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺) ∧ (𝑃‘0) ≠ (𝑃‘1)) → Fun ⟨“(𝑃‘0)(𝑃‘1)”⟩)
27263expa 1114 . . . . . . . . . . . . . . . 16 ((((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘1)) → Fun ⟨“(𝑃‘0)(𝑃‘1)”⟩)
2827adantl 484 . . . . . . . . . . . . . . 15 ((𝑃 = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩} ∧ (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘1))) → Fun ⟨“(𝑃‘0)(𝑃‘1)”⟩)
29 simpl 485 . . . . . . . . . . . . . . . . . 18 ((𝑃 = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩} ∧ (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘1))) → 𝑃 = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩})
30 s2prop 14263 . . . . . . . . . . . . . . . . . . . . 21 (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺)) → ⟨“(𝑃‘0)(𝑃‘1)”⟩ = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩})
3130eqcomd 2827 . . . . . . . . . . . . . . . . . . . 20 (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺)) → {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩} = ⟨“(𝑃‘0)(𝑃‘1)”⟩)
3231adantr 483 . . . . . . . . . . . . . . . . . . 19 ((((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘1)) → {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩} = ⟨“(𝑃‘0)(𝑃‘1)”⟩)
3332adantl 484 . . . . . . . . . . . . . . . . . 18 ((𝑃 = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩} ∧ (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘1))) → {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩} = ⟨“(𝑃‘0)(𝑃‘1)”⟩)
3429, 33eqtrd 2856 . . . . . . . . . . . . . . . . 17 ((𝑃 = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩} ∧ (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘1))) → 𝑃 = ⟨“(𝑃‘0)(𝑃‘1)”⟩)
3534cnveqd 5740 . . . . . . . . . . . . . . . 16 ((𝑃 = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩} ∧ (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘1))) → 𝑃 = ⟨“(𝑃‘0)(𝑃‘1)”⟩)
3635funeqd 6371 . . . . . . . . . . . . . . 15 ((𝑃 = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩} ∧ (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘1))) → (Fun 𝑃 ↔ Fun ⟨“(𝑃‘0)(𝑃‘1)”⟩))
3728, 36mpbird 259 . . . . . . . . . . . . . 14 ((𝑃 = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩} ∧ (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘1))) → Fun 𝑃)
3837exp32 423 . . . . . . . . . . . . 13 (𝑃 = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩} → (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺)) → ((𝑃‘0) ≠ (𝑃‘1) → Fun 𝑃)))
3938impcom 410 . . . . . . . . . . . 12 ((((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺)) ∧ 𝑃 = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩}) → ((𝑃‘0) ≠ (𝑃‘1) → Fun 𝑃))
40393impa 1106 . . . . . . . . . . 11 (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺) ∧ 𝑃 = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩}) → ((𝑃‘0) ≠ (𝑃‘1) → Fun 𝑃))
4125, 40sylbi 219 . . . . . . . . . 10 (𝑃:{0, 1}⟶(Vtx‘𝐺) → ((𝑃‘0) ≠ (𝑃‘1) → Fun 𝑃))
4241imp 409 . . . . . . . . 9 ((𝑃:{0, 1}⟶(Vtx‘𝐺) ∧ (𝑃‘0) ≠ (𝑃‘1)) → Fun 𝑃)
4322, 42syl6bi 255 . . . . . . . 8 (((♯‘𝐹) = 1 ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ 𝐴𝐵) → Fun 𝑃))
4443expd 418 . . . . . . 7 (((♯‘𝐹) = 1 ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (𝐴𝐵 → Fun 𝑃)))
4544com12 32 . . . . . 6 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (((♯‘𝐹) = 1 ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → (𝐴𝐵 → Fun 𝑃)))
4645expd 418 . . . . 5 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → ((♯‘𝐹) = 1 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → (𝐴𝐵 → Fun 𝑃))))
4746com34 91 . . . 4 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → ((♯‘𝐹) = 1 → (𝐴𝐵 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → Fun 𝑃))))
4847impd 413 . . 3 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (((♯‘𝐹) = 1 ∧ 𝐴𝐵) → (((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → Fun 𝑃)))
492, 48syl 17 . 2 (𝐹(Walks‘𝐺)𝑃 → (((♯‘𝐹) = 1 ∧ 𝐴𝐵) → (((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → Fun 𝑃)))
50493imp 1107 1 ((𝐹(Walks‘𝐺)𝑃 ∧ ((♯‘𝐹) = 1 ∧ 𝐴𝐵) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → Fun 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  {cpr 4562  cop 4566   class class class wbr 5058  ccnv 5548  Fun wfun 6343  wf 6345  cfv 6349  (class class class)co 7150  0cc0 10531  1c1 10532   + caddc 10534  cz 11975  ...cfz 12886  chash 13684  ⟨“cs2 14197  Vtxcvtx 26775  Walkscwlks 27372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-fzo 13028  df-hash 13685  df-word 13856  df-concat 13917  df-s1 13944  df-s2 14204  df-wlks 27375
This theorem is referenced by:  uhgrwkspth  27530
  Copyright terms: Public domain W3C validator