MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmcaulem Structured version   Visualization version   GIF version

Theorem ulmcaulem 24981
Description: Lemma for ulmcau 24982 and ulmcau2 24983: show the equivalence of the four- and five-quantifier forms of the Cauchy convergence condition. Compare cau3 14714. (Contributed by Mario Carneiro, 1-Mar-2015.)
Hypotheses
Ref Expression
ulmcau.z 𝑍 = (ℤ𝑀)
ulmcau.m (𝜑𝑀 ∈ ℤ)
ulmcau.s (𝜑𝑆𝑉)
ulmcau.f (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
Assertion
Ref Expression
ulmcaulem (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
Distinct variable groups:   𝑗,𝑘,𝑚,𝑥,𝑧,𝐹   𝜑,𝑗,𝑘,𝑚,𝑥,𝑧   𝑆,𝑗,𝑘,𝑚,𝑥,𝑧   𝑗,𝑍,𝑘,𝑚,𝑥,𝑧   𝑗,𝑀,𝑘,𝑧
Allowed substitution hints:   𝑀(𝑥,𝑚)   𝑉(𝑥,𝑧,𝑗,𝑘,𝑚)

Proof of Theorem ulmcaulem
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 breq2 5069 . . . . . 6 (𝑥 = 𝑤 → ((abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥 ↔ (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑤))
21ralbidv 3197 . . . . 5 (𝑥 = 𝑤 → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥 ↔ ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑤))
32rexralbidv 3301 . . . 4 (𝑥 = 𝑤 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑤))
43cbvralvw 3449 . . 3 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥 ↔ ∀𝑤 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑤)
5 rphalfcl 12415 . . . . . . 7 (𝑥 ∈ ℝ+ → (𝑥 / 2) ∈ ℝ+)
6 breq2 5069 . . . . . . . . . 10 (𝑤 = (𝑥 / 2) → ((abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑤 ↔ (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)))
76ralbidv 3197 . . . . . . . . 9 (𝑤 = (𝑥 / 2) → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑤 ↔ ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)))
87rexralbidv 3301 . . . . . . . 8 (𝑤 = (𝑥 / 2) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑤 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)))
98rspcv 3617 . . . . . . 7 ((𝑥 / 2) ∈ ℝ+ → (∀𝑤 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑤 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)))
105, 9syl 17 . . . . . 6 (𝑥 ∈ ℝ+ → (∀𝑤 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑤 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)))
1110adantl 484 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (∀𝑤 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑤 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)))
12 fveq2 6669 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
1312fveq1d 6671 . . . . . . . . . . . 12 (𝑘 = 𝑚 → ((𝐹𝑘)‘𝑧) = ((𝐹𝑚)‘𝑧))
1413fvoveq1d 7177 . . . . . . . . . . 11 (𝑘 = 𝑚 → (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) = (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))))
1514breq1d 5075 . . . . . . . . . 10 (𝑘 = 𝑚 → ((abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) ↔ (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)))
1615ralbidv 3197 . . . . . . . . 9 (𝑘 = 𝑚 → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) ↔ ∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)))
1716cbvralvw 3449 . . . . . . . 8 (∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) ↔ ∀𝑚 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2))
1817biimpi 218 . . . . . . 7 (∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) → ∀𝑚 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2))
19 uzss 12264 . . . . . . . . . . . . . . 15 (𝑘 ∈ (ℤ𝑗) → (ℤ𝑘) ⊆ (ℤ𝑗))
2019ad2antlr 725 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)) → (ℤ𝑘) ⊆ (ℤ𝑗))
21 ssralv 4032 . . . . . . . . . . . . . 14 ((ℤ𝑘) ⊆ (ℤ𝑗) → (∀𝑚 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) → ∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)))
2220, 21syl 17 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)) → (∀𝑚 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) → ∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)))
23 r19.26 3170 . . . . . . . . . . . . . . . . 17 (∀𝑧𝑆 ((abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) ∧ (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)) ↔ (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)))
24 ulmcau.f . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
2524adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑥 ∈ ℝ+) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
2625ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
27 ulmcau.z . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑍 = (ℤ𝑀)
2827uztrn2 12261 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
2928adantll 712 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
3027uztrn2 12261 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑘𝑍𝑚 ∈ (ℤ𝑘)) → 𝑚𝑍)
3129, 30sylan 582 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) → 𝑚𝑍)
3226, 31ffvelrnd 6851 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) → (𝐹𝑚) ∈ (ℂ ↑m 𝑆))
33 elmapi 8427 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹𝑚) ∈ (ℂ ↑m 𝑆) → (𝐹𝑚):𝑆⟶ℂ)
3432, 33syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) → (𝐹𝑚):𝑆⟶ℂ)
3534ffvelrnda 6850 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑧𝑆) → ((𝐹𝑚)‘𝑧) ∈ ℂ)
3625ffvelrnda 6850 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (𝐹𝑗) ∈ (ℂ ↑m 𝑆))
3736ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) → (𝐹𝑗) ∈ (ℂ ↑m 𝑆))
38 elmapi 8427 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹𝑗) ∈ (ℂ ↑m 𝑆) → (𝐹𝑗):𝑆⟶ℂ)
3937, 38syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) → (𝐹𝑗):𝑆⟶ℂ)
4039ffvelrnda 6850 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑧𝑆) → ((𝐹𝑗)‘𝑧) ∈ ℂ)
4135, 40abssubd 14812 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑧𝑆) → (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) = (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑚)‘𝑧))))
4241breq1d 5075 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑧𝑆) → ((abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) ↔ (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑚)‘𝑧))) < (𝑥 / 2)))
4342biimpd 231 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑧𝑆) → ((abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) → (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑚)‘𝑧))) < (𝑥 / 2)))
44 ffvelrn 6848 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐹:𝑍⟶(ℂ ↑m 𝑆) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ (ℂ ↑m 𝑆))
4525, 28, 44syl2an 597 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑘) ∈ (ℂ ↑m 𝑆))
4645anassrs 470 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ (ℂ ↑m 𝑆))
4746adantr 483 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) → (𝐹𝑘) ∈ (ℂ ↑m 𝑆))
48 elmapi 8427 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹𝑘) ∈ (ℂ ↑m 𝑆) → (𝐹𝑘):𝑆⟶ℂ)
4947, 48syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) → (𝐹𝑘):𝑆⟶ℂ)
5049ffvelrnda 6850 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑧𝑆) → ((𝐹𝑘)‘𝑧) ∈ ℂ)
51 rpre 12396 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
5251ad2antlr 725 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → 𝑥 ∈ ℝ)
5352ad3antrrr 728 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑧𝑆) → 𝑥 ∈ ℝ)
54 abs3lem 14697 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹𝑘)‘𝑧) ∈ ℂ ∧ ((𝐹𝑚)‘𝑧) ∈ ℂ) ∧ (((𝐹𝑗)‘𝑧) ∈ ℂ ∧ 𝑥 ∈ ℝ)) → (((abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) ∧ (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑚)‘𝑧))) < (𝑥 / 2)) → (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
5550, 35, 40, 53, 54syl22anc 836 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑧𝑆) → (((abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) ∧ (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑚)‘𝑧))) < (𝑥 / 2)) → (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
5643, 55sylan2d 606 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑧𝑆) → (((abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) ∧ (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)) → (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
5756ralimdva 3177 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) → (∀𝑧𝑆 ((abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) ∧ (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)) → ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
5823, 57syl5bir 245 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) → ((∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)) → ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
5958expdimp 455 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)) → (∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) → ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
6059an32s 650 . . . . . . . . . . . . . 14 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)) ∧ 𝑚 ∈ (ℤ𝑘)) → (∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) → ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
6160ralimdva 3177 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)) → (∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) → ∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
6222, 61syld 47 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)) → (∀𝑚 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) → ∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
6362impancom 454 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ∀𝑚 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)) → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) → ∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
6463an32s 650 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑚 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) → ∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
6564ralimdva 3177 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑚 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)) → (∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) → ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
6665ex 415 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑚 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) → (∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) → ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥)))
6766com23 86 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) → (∀𝑚 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) → ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥)))
6818, 67mpdi 45 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) → ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
6968reximdva 3274 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
7011, 69syld 47 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (∀𝑤 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑤 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
7170ralrimdva 3189 . . 3 (𝜑 → (∀𝑤 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑤 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
724, 71syl5bi 244 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
73 eluzelz 12252 . . . . . . . . 9 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
7473, 27eleq2s 2931 . . . . . . . 8 (𝑗𝑍𝑗 ∈ ℤ)
75 uzid 12257 . . . . . . . 8 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
7674, 75syl 17 . . . . . . 7 (𝑗𝑍𝑗 ∈ (ℤ𝑗))
7776adantl 484 . . . . . 6 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑗))
78 fveq2 6669 . . . . . . . 8 (𝑘 = 𝑗 → (ℤ𝑘) = (ℤ𝑗))
79 fveq2 6669 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
8079fveq1d 6671 . . . . . . . . . . 11 (𝑘 = 𝑗 → ((𝐹𝑘)‘𝑧) = ((𝐹𝑗)‘𝑧))
8180fvoveq1d 7177 . . . . . . . . . 10 (𝑘 = 𝑗 → (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) = (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑚)‘𝑧))))
8281breq1d 5075 . . . . . . . . 9 (𝑘 = 𝑗 → ((abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥 ↔ (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
8382ralbidv 3197 . . . . . . . 8 (𝑘 = 𝑗 → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥 ↔ ∀𝑧𝑆 (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
8478, 83raleqbidv 3401 . . . . . . 7 (𝑘 = 𝑗 → (∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥 ↔ ∀𝑚 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
8584rspcv 3617 . . . . . 6 (𝑗 ∈ (ℤ𝑗) → (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥 → ∀𝑚 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
8677, 85syl 17 . . . . 5 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥 → ∀𝑚 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
87 fveq2 6669 . . . . . . . . . . . 12 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
8887fveq1d 6671 . . . . . . . . . . 11 (𝑚 = 𝑘 → ((𝐹𝑚)‘𝑧) = ((𝐹𝑘)‘𝑧))
8988oveq2d 7171 . . . . . . . . . 10 (𝑚 = 𝑘 → (((𝐹𝑗)‘𝑧) − ((𝐹𝑚)‘𝑧)) = (((𝐹𝑗)‘𝑧) − ((𝐹𝑘)‘𝑧)))
9089fveq2d 6673 . . . . . . . . 9 (𝑚 = 𝑘 → (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑚)‘𝑧))) = (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑘)‘𝑧))))
9190breq1d 5075 . . . . . . . 8 (𝑚 = 𝑘 → ((abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥 ↔ (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑘)‘𝑧))) < 𝑥))
9291ralbidv 3197 . . . . . . 7 (𝑚 = 𝑘 → (∀𝑧𝑆 (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥 ↔ ∀𝑧𝑆 (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑘)‘𝑧))) < 𝑥))
9392cbvralvw 3449 . . . . . 6 (∀𝑚 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑘)‘𝑧))) < 𝑥)
9424ffvelrnda 6850 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ (ℂ ↑m 𝑆))
9594adantr 483 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑗) ∈ (ℂ ↑m 𝑆))
9695, 38syl 17 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑗):𝑆⟶ℂ)
9796ffvelrnda 6850 . . . . . . . . . 10 ((((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → ((𝐹𝑗)‘𝑧) ∈ ℂ)
9824, 28, 44syl2an 597 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑘) ∈ (ℂ ↑m 𝑆))
9998anassrs 470 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ (ℂ ↑m 𝑆))
10099, 48syl 17 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘):𝑆⟶ℂ)
101100ffvelrnda 6850 . . . . . . . . . 10 ((((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → ((𝐹𝑘)‘𝑧) ∈ ℂ)
10297, 101abssubd 14812 . . . . . . . . 9 ((((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑘)‘𝑧))) = (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))))
103102breq1d 5075 . . . . . . . 8 ((((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → ((abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑘)‘𝑧))) < 𝑥 ↔ (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥))
104103ralbidva 3196 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (∀𝑧𝑆 (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑘)‘𝑧))) < 𝑥 ↔ ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥))
105104ralbidva 3196 . . . . . 6 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑘)‘𝑧))) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥))
10693, 105syl5bb 285 . . . . 5 ((𝜑𝑗𝑍) → (∀𝑚 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥))
10786, 106sylibd 241 . . . 4 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥 → ∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥))
108107reximdva 3274 . . 3 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥))
109108ralimdv 3178 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥))
11072, 109impbid 214 1 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  wrex 3139  wss 3935   class class class wbr 5065  wf 6350  cfv 6354  (class class class)co 7155  m cmap 8405  cc 10534  cr 10535   < clt 10674  cmin 10869   / cdiv 11296  2c2 11691  cz 11980  cuz 12242  +crp 12388  abscabs 14592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-map 8407  df-en 8509  df-dom 8510  df-sdom 8511  df-sup 8905  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-n0 11897  df-z 11981  df-uz 12243  df-rp 12389  df-seq 13369  df-exp 13429  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594
This theorem is referenced by:  ulmcau  24982  ulmcau2  24983
  Copyright terms: Public domain W3C validator