Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmcn Structured version   Visualization version   GIF version

Theorem ulmcn 24198
 Description: A uniform limit of continuous functions is continuous. (Contributed by Mario Carneiro, 27-Feb-2015.)
Hypotheses
Ref Expression
ulmcn.z 𝑍 = (ℤ𝑀)
ulmcn.m (𝜑𝑀 ∈ ℤ)
ulmcn.f (𝜑𝐹:𝑍⟶(𝑆cn→ℂ))
ulmcn.u (𝜑𝐹(⇝𝑢𝑆)𝐺)
Assertion
Ref Expression
ulmcn (𝜑𝐺 ∈ (𝑆cn→ℂ))

Proof of Theorem ulmcn
Dummy variables 𝑗 𝑘 𝑤 𝑧 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ulmcn.u . . 3 (𝜑𝐹(⇝𝑢𝑆)𝐺)
2 ulmcl 24180 . . 3 (𝐹(⇝𝑢𝑆)𝐺𝐺:𝑆⟶ℂ)
31, 2syl 17 . 2 (𝜑𝐺:𝑆⟶ℂ)
4 ulmcn.z . . . . 5 𝑍 = (ℤ𝑀)
5 ulmcn.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
65adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → 𝑀 ∈ ℤ)
7 ulmcn.f . . . . . . 7 (𝜑𝐹:𝑍⟶(𝑆cn→ℂ))
8 cncff 22743 . . . . . . . . 9 (𝑥 ∈ (𝑆cn→ℂ) → 𝑥:𝑆⟶ℂ)
9 cnex 10055 . . . . . . . . . 10 ℂ ∈ V
10 cncfrss 22741 . . . . . . . . . . 11 (𝑥 ∈ (𝑆cn→ℂ) → 𝑆 ⊆ ℂ)
11 ssexg 4837 . . . . . . . . . . 11 ((𝑆 ⊆ ℂ ∧ ℂ ∈ V) → 𝑆 ∈ V)
1210, 9, 11sylancl 695 . . . . . . . . . 10 (𝑥 ∈ (𝑆cn→ℂ) → 𝑆 ∈ V)
13 elmapg 7912 . . . . . . . . . 10 ((ℂ ∈ V ∧ 𝑆 ∈ V) → (𝑥 ∈ (ℂ ↑𝑚 𝑆) ↔ 𝑥:𝑆⟶ℂ))
149, 12, 13sylancr 696 . . . . . . . . 9 (𝑥 ∈ (𝑆cn→ℂ) → (𝑥 ∈ (ℂ ↑𝑚 𝑆) ↔ 𝑥:𝑆⟶ℂ))
158, 14mpbird 247 . . . . . . . 8 (𝑥 ∈ (𝑆cn→ℂ) → 𝑥 ∈ (ℂ ↑𝑚 𝑆))
1615ssriv 3640 . . . . . . 7 (𝑆cn→ℂ) ⊆ (ℂ ↑𝑚 𝑆)
17 fss 6094 . . . . . . 7 ((𝐹:𝑍⟶(𝑆cn→ℂ) ∧ (𝑆cn→ℂ) ⊆ (ℂ ↑𝑚 𝑆)) → 𝐹:𝑍⟶(ℂ ↑𝑚 𝑆))
187, 16, 17sylancl 695 . . . . . 6 (𝜑𝐹:𝑍⟶(ℂ ↑𝑚 𝑆))
1918adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → 𝐹:𝑍⟶(ℂ ↑𝑚 𝑆))
20 eqidd 2652 . . . . 5 (((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ (𝑘𝑍𝑤𝑆)) → ((𝐹𝑘)‘𝑤) = ((𝐹𝑘)‘𝑤))
21 eqidd 2652 . . . . 5 (((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑤𝑆) → (𝐺𝑤) = (𝐺𝑤))
221adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → 𝐹(⇝𝑢𝑆)𝐺)
23 rphalfcl 11896 . . . . . . 7 (𝑦 ∈ ℝ+ → (𝑦 / 2) ∈ ℝ+)
2423ad2antll 765 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → (𝑦 / 2) ∈ ℝ+)
2524rphalfcld 11922 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → ((𝑦 / 2) / 2) ∈ ℝ+)
264, 6, 19, 20, 21, 22, 25ulmi 24185 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2))
274r19.2uz 14135 . . . . 5 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) → ∃𝑘𝑍𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2))
28 simplrl 817 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) → 𝑥𝑆)
29 fveq2 6229 . . . . . . . . . . . 12 (𝑤 = 𝑥 → ((𝐹𝑘)‘𝑤) = ((𝐹𝑘)‘𝑥))
30 fveq2 6229 . . . . . . . . . . . 12 (𝑤 = 𝑥 → (𝐺𝑤) = (𝐺𝑥))
3129, 30oveq12d 6708 . . . . . . . . . . 11 (𝑤 = 𝑥 → (((𝐹𝑘)‘𝑤) − (𝐺𝑤)) = (((𝐹𝑘)‘𝑥) − (𝐺𝑥)))
3231fveq2d 6233 . . . . . . . . . 10 (𝑤 = 𝑥 → (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) = (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))))
3332breq1d 4695 . . . . . . . . 9 (𝑤 = 𝑥 → ((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) ↔ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)))
3433rspcv 3336 . . . . . . . 8 (𝑥𝑆 → (∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) → (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)))
3528, 34syl 17 . . . . . . 7 (((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) → (∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) → (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)))
367adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → 𝐹:𝑍⟶(𝑆cn→ℂ))
3736ffvelrnda 6399 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ (𝑆cn→ℂ))
3824adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) → (𝑦 / 2) ∈ ℝ+)
39 cncfi 22744 . . . . . . . . . . 11 (((𝐹𝑘) ∈ (𝑆cn→ℂ) ∧ 𝑥𝑆 ∧ (𝑦 / 2) ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2)))
4037, 28, 38, 39syl3anc 1366 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) → ∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2)))
4140ad2antrr 762 . . . . . . . . 9 (((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ ∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2)) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) → ∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2)))
42 r19.26 3093 . . . . . . . . . . . . 13 (∀𝑤𝑆 ((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) ∧ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2))) ↔ (∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) ∧ ∀𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2))))
4319ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → 𝐹:𝑍⟶(ℂ ↑𝑚 𝑆))
44 simplr 807 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → 𝑘𝑍)
4543, 44ffvelrnd 6400 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (𝐹𝑘) ∈ (ℂ ↑𝑚 𝑆))
46 elmapi 7921 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐹𝑘) ∈ (ℂ ↑𝑚 𝑆) → (𝐹𝑘):𝑆⟶ℂ)
4745, 46syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (𝐹𝑘):𝑆⟶ℂ)
4828adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → 𝑥𝑆)
4947, 48ffvelrnd 6400 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((𝐹𝑘)‘𝑥) ∈ ℂ)
503ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → 𝐺:𝑆⟶ℂ)
5150, 48ffvelrnd 6400 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (𝐺𝑥) ∈ ℂ)
5249, 51subcld 10430 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((𝐹𝑘)‘𝑥) − (𝐺𝑥)) ∈ ℂ)
5352abscld 14219 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) ∈ ℝ)
54 ffvelrn 6397 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐹𝑘):𝑆⟶ℂ ∧ 𝑤𝑆) → ((𝐹𝑘)‘𝑤) ∈ ℂ)
5547, 54sylancom 702 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((𝐹𝑘)‘𝑤) ∈ ℂ)
56 ffvelrn 6397 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐺:𝑆⟶ℂ ∧ 𝑤𝑆) → (𝐺𝑤) ∈ ℂ)
5750, 56sylancom 702 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (𝐺𝑤) ∈ ℂ)
5855, 57subcld 10430 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((𝐹𝑘)‘𝑤) − (𝐺𝑤)) ∈ ℂ)
5958abscld 14219 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) ∈ ℝ)
6038adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (𝑦 / 2) ∈ ℝ+)
6160rphalfcld 11922 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((𝑦 / 2) / 2) ∈ ℝ+)
6261rpred 11910 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((𝑦 / 2) / 2) ∈ ℝ)
63 lt2add 10551 . . . . . . . . . . . . . . . . . . . . 21 ((((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) ∈ ℝ ∧ (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) ∈ ℝ) ∧ (((𝑦 / 2) / 2) ∈ ℝ ∧ ((𝑦 / 2) / 2) ∈ ℝ)) → (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2) ∧ (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2)) → ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) < (((𝑦 / 2) / 2) + ((𝑦 / 2) / 2))))
6453, 59, 62, 62, 63syl22anc 1367 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2) ∧ (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2)) → ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) < (((𝑦 / 2) / 2) + ((𝑦 / 2) / 2))))
6560rpred 11910 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (𝑦 / 2) ∈ ℝ)
6665recnd 10106 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (𝑦 / 2) ∈ ℂ)
67662halvesd 11316 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((𝑦 / 2) / 2) + ((𝑦 / 2) / 2)) = (𝑦 / 2))
6867breq2d 4697 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) < (((𝑦 / 2) / 2) + ((𝑦 / 2) / 2)) ↔ ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) < (𝑦 / 2)))
6953, 59readdcld 10107 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) ∈ ℝ)
7055, 49subcld 10430 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)) ∈ ℂ)
7170abscld 14219 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) ∈ ℝ)
72 lt2add 10551 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) ∈ ℝ ∧ (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) ∈ ℝ) ∧ ((𝑦 / 2) ∈ ℝ ∧ (𝑦 / 2) ∈ ℝ)) → ((((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) < (𝑦 / 2) ∧ (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2)) → (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) < ((𝑦 / 2) + (𝑦 / 2))))
7369, 71, 65, 65, 72syl22anc 1367 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) < (𝑦 / 2) ∧ (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2)) → (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) < ((𝑦 / 2) + (𝑦 / 2))))
74 rpre 11877 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
7574ad2antll 765 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → 𝑦 ∈ ℝ)
7675ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → 𝑦 ∈ ℝ)
7776recnd 10106 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → 𝑦 ∈ ℂ)
78772halvesd 11316 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((𝑦 / 2) + (𝑦 / 2)) = 𝑦)
7978breq2d 4697 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) < ((𝑦 / 2) + (𝑦 / 2)) ↔ (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) < 𝑦))
8057, 51subcld 10430 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((𝐺𝑤) − (𝐺𝑥)) ∈ ℂ)
8180abscld 14219 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘((𝐺𝑤) − (𝐺𝑥))) ∈ ℝ)
8257, 49subcld 10430 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((𝐺𝑤) − ((𝐹𝑘)‘𝑥)) ∈ ℂ)
8382abscld 14219 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥))) ∈ ℝ)
8453, 83readdcld 10107 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥)))) ∈ ℝ)
8569, 71readdcld 10107 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) ∈ ℝ)
8657, 51, 49abs3difd 14243 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘((𝐺𝑤) − (𝐺𝑥))) ≤ ((abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥))) + (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥)))))
8783recnd 10106 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥))) ∈ ℂ)
8853recnd 10106 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) ∈ ℂ)
8987, 88addcomd 10276 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥))) + (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥)))) = ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥)))))
9086, 89breqtrd 4711 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘((𝐺𝑤) − (𝐺𝑥))) ≤ ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥)))))
9159, 71readdcld 10107 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) ∈ ℝ)
9257, 49, 55abs3difd 14243 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥))) ≤ ((abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑤))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))))
9357, 55abssubd 14236 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑤))) = (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))))
9493oveq1d 6705 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑤))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) = ((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))))
9592, 94breqtrd 4711 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥))) ≤ ((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))))
9683, 91, 53, 95leadd2dd 10680 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥)))) ≤ ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + ((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))))))
9759recnd 10106 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) ∈ ℂ)
9871recnd 10106 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) ∈ ℂ)
9988, 97, 98addassd 10100 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) = ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + ((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))))))
10096, 99breqtrrd 4713 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥)))) ≤ (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))))
10181, 84, 85, 90, 100letrd 10232 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘((𝐺𝑤) − (𝐺𝑥))) ≤ (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))))
102 lelttr 10166 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((abs‘((𝐺𝑤) − (𝐺𝑥))) ∈ ℝ ∧ (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((abs‘((𝐺𝑤) − (𝐺𝑥))) ≤ (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) ∧ (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) < 𝑦) → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))
10381, 85, 76, 102syl3anc 1366 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((abs‘((𝐺𝑤) − (𝐺𝑥))) ≤ (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) ∧ (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) < 𝑦) → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))
104101, 103mpand 711 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) < 𝑦 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))
10579, 104sylbid 230 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) < ((𝑦 / 2) + (𝑦 / 2)) → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))
10673, 105syld 47 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) < (𝑦 / 2) ∧ (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2)) → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))
107106expd 451 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) < (𝑦 / 2) → ((abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2) → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
10868, 107sylbid 230 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) < (((𝑦 / 2) / 2) + ((𝑦 / 2) / 2)) → ((abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2) → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
10964, 108syld 47 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2) ∧ (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2)) → ((abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2) → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
110109expdimp 452 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) → ((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) → ((abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2) → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
111110an32s 863 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) ∧ 𝑤𝑆) → ((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) → ((abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2) → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
112111imp 444 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) ∧ 𝑤𝑆) ∧ (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2)) → ((abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2) → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))
113112imim2d 57 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) ∧ 𝑤𝑆) ∧ (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2)) → (((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2)) → ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
114113expimpd 628 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) ∧ 𝑤𝑆) → (((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) ∧ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2))) → ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
115114ralimdva 2991 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) → (∀𝑤𝑆 ((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) ∧ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2))) → ∀𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
11642, 115syl5bir 233 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) → ((∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) ∧ ∀𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2))) → ∀𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
117116expdimp 452 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) ∧ ∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2)) → (∀𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2)) → ∀𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
118117an32s 863 . . . . . . . . . 10 (((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ ∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2)) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) → (∀𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2)) → ∀𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
119118reximdv 3045 . . . . . . . . 9 (((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ ∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2)) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) → (∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2)) → ∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
12041, 119mpd 15 . . . . . . . 8 (((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ ∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2)) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) → ∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))
121120exp31 629 . . . . . . 7 (((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) → (∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) → ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2) → ∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))))
12235, 121mpdd 43 . . . . . 6 (((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) → (∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) → ∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
123122rexlimdva 3060 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → (∃𝑘𝑍𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) → ∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
12427, 123syl5 34 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) → ∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
12526, 124mpd 15 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → ∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))
126125ralrimivva 3000 . 2 (𝜑 → ∀𝑥𝑆𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))
127 uzid 11740 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
1285, 127syl 17 . . . . . 6 (𝜑𝑀 ∈ (ℤ𝑀))
129128, 4syl6eleqr 2741 . . . . 5 (𝜑𝑀𝑍)
1307, 129ffvelrnd 6400 . . . 4 (𝜑 → (𝐹𝑀) ∈ (𝑆cn→ℂ))
131 cncfrss 22741 . . . 4 ((𝐹𝑀) ∈ (𝑆cn→ℂ) → 𝑆 ⊆ ℂ)
132130, 131syl 17 . . 3 (𝜑𝑆 ⊆ ℂ)
133 ssid 3657 . . 3 ℂ ⊆ ℂ
134 elcncf2 22740 . . 3 ((𝑆 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐺 ∈ (𝑆cn→ℂ) ↔ (𝐺:𝑆⟶ℂ ∧ ∀𝑥𝑆𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))))
135132, 133, 134sylancl 695 . 2 (𝜑 → (𝐺 ∈ (𝑆cn→ℂ) ↔ (𝐺:𝑆⟶ℂ ∧ ∀𝑥𝑆𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))))
1363, 126, 135mpbir2and 977 1 (𝜑𝐺 ∈ (𝑆cn→ℂ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1523   ∈ wcel 2030  ∀wral 2941  ∃wrex 2942  Vcvv 3231   ⊆ wss 3607   class class class wbr 4685  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690   ↑𝑚 cmap 7899  ℂcc 9972  ℝcr 9973   + caddc 9977   < clt 10112   ≤ cle 10113   − cmin 10304   / cdiv 10722  2c2 11108  ℤcz 11415  ℤ≥cuz 11725  ℝ+crp 11870  abscabs 14018  –cn→ccncf 22726  ⇝𝑢culm 24175 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-cncf 22728  df-ulm 24176 This theorem is referenced by:  psercn2  24222  knoppcn  32619
 Copyright terms: Public domain W3C validator