MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmcn Structured version   Visualization version   GIF version

Theorem ulmcn 24981
Description: A uniform limit of continuous functions is continuous. (Contributed by Mario Carneiro, 27-Feb-2015.)
Hypotheses
Ref Expression
ulmcn.z 𝑍 = (ℤ𝑀)
ulmcn.m (𝜑𝑀 ∈ ℤ)
ulmcn.f (𝜑𝐹:𝑍⟶(𝑆cn→ℂ))
ulmcn.u (𝜑𝐹(⇝𝑢𝑆)𝐺)
Assertion
Ref Expression
ulmcn (𝜑𝐺 ∈ (𝑆cn→ℂ))

Proof of Theorem ulmcn
Dummy variables 𝑗 𝑘 𝑤 𝑧 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ulmcn.u . . 3 (𝜑𝐹(⇝𝑢𝑆)𝐺)
2 ulmcl 24963 . . 3 (𝐹(⇝𝑢𝑆)𝐺𝐺:𝑆⟶ℂ)
31, 2syl 17 . 2 (𝜑𝐺:𝑆⟶ℂ)
4 ulmcn.z . . . . 5 𝑍 = (ℤ𝑀)
5 ulmcn.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
65adantr 483 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → 𝑀 ∈ ℤ)
7 ulmcn.f . . . . . . 7 (𝜑𝐹:𝑍⟶(𝑆cn→ℂ))
8 cncff 23495 . . . . . . . . 9 (𝑥 ∈ (𝑆cn→ℂ) → 𝑥:𝑆⟶ℂ)
9 cnex 10612 . . . . . . . . . 10 ℂ ∈ V
10 cncfrss 23493 . . . . . . . . . . 11 (𝑥 ∈ (𝑆cn→ℂ) → 𝑆 ⊆ ℂ)
11 ssexg 5219 . . . . . . . . . . 11 ((𝑆 ⊆ ℂ ∧ ℂ ∈ V) → 𝑆 ∈ V)
1210, 9, 11sylancl 588 . . . . . . . . . 10 (𝑥 ∈ (𝑆cn→ℂ) → 𝑆 ∈ V)
13 elmapg 8413 . . . . . . . . . 10 ((ℂ ∈ V ∧ 𝑆 ∈ V) → (𝑥 ∈ (ℂ ↑m 𝑆) ↔ 𝑥:𝑆⟶ℂ))
149, 12, 13sylancr 589 . . . . . . . . 9 (𝑥 ∈ (𝑆cn→ℂ) → (𝑥 ∈ (ℂ ↑m 𝑆) ↔ 𝑥:𝑆⟶ℂ))
158, 14mpbird 259 . . . . . . . 8 (𝑥 ∈ (𝑆cn→ℂ) → 𝑥 ∈ (ℂ ↑m 𝑆))
1615ssriv 3970 . . . . . . 7 (𝑆cn→ℂ) ⊆ (ℂ ↑m 𝑆)
17 fss 6521 . . . . . . 7 ((𝐹:𝑍⟶(𝑆cn→ℂ) ∧ (𝑆cn→ℂ) ⊆ (ℂ ↑m 𝑆)) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
187, 16, 17sylancl 588 . . . . . 6 (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
1918adantr 483 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
20 eqidd 2822 . . . . 5 (((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ (𝑘𝑍𝑤𝑆)) → ((𝐹𝑘)‘𝑤) = ((𝐹𝑘)‘𝑤))
21 eqidd 2822 . . . . 5 (((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑤𝑆) → (𝐺𝑤) = (𝐺𝑤))
221adantr 483 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → 𝐹(⇝𝑢𝑆)𝐺)
23 rphalfcl 12410 . . . . . . 7 (𝑦 ∈ ℝ+ → (𝑦 / 2) ∈ ℝ+)
2423ad2antll 727 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → (𝑦 / 2) ∈ ℝ+)
2524rphalfcld 12437 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → ((𝑦 / 2) / 2) ∈ ℝ+)
264, 6, 19, 20, 21, 22, 25ulmi 24968 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2))
274r19.2uz 14705 . . . . 5 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) → ∃𝑘𝑍𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2))
28 simplrl 775 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) → 𝑥𝑆)
29 fveq2 6664 . . . . . . . . . . . 12 (𝑤 = 𝑥 → ((𝐹𝑘)‘𝑤) = ((𝐹𝑘)‘𝑥))
30 fveq2 6664 . . . . . . . . . . . 12 (𝑤 = 𝑥 → (𝐺𝑤) = (𝐺𝑥))
3129, 30oveq12d 7168 . . . . . . . . . . 11 (𝑤 = 𝑥 → (((𝐹𝑘)‘𝑤) − (𝐺𝑤)) = (((𝐹𝑘)‘𝑥) − (𝐺𝑥)))
3231fveq2d 6668 . . . . . . . . . 10 (𝑤 = 𝑥 → (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) = (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))))
3332breq1d 5068 . . . . . . . . 9 (𝑤 = 𝑥 → ((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) ↔ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)))
3433rspcv 3617 . . . . . . . 8 (𝑥𝑆 → (∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) → (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)))
3528, 34syl 17 . . . . . . 7 (((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) → (∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) → (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)))
367adantr 483 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → 𝐹:𝑍⟶(𝑆cn→ℂ))
3736ffvelrnda 6845 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ (𝑆cn→ℂ))
3824adantr 483 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) → (𝑦 / 2) ∈ ℝ+)
39 cncfi 23496 . . . . . . . . . . 11 (((𝐹𝑘) ∈ (𝑆cn→ℂ) ∧ 𝑥𝑆 ∧ (𝑦 / 2) ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2)))
4037, 28, 38, 39syl3anc 1367 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) → ∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2)))
4140ad2antrr 724 . . . . . . . . 9 (((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ ∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2)) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) → ∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2)))
42 r19.26 3170 . . . . . . . . . . . . 13 (∀𝑤𝑆 ((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) ∧ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2))) ↔ (∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) ∧ ∀𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2))))
4319ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
44 simplr 767 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → 𝑘𝑍)
4543, 44ffvelrnd 6846 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (𝐹𝑘) ∈ (ℂ ↑m 𝑆))
46 elmapi 8422 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐹𝑘) ∈ (ℂ ↑m 𝑆) → (𝐹𝑘):𝑆⟶ℂ)
4745, 46syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (𝐹𝑘):𝑆⟶ℂ)
4828adantr 483 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → 𝑥𝑆)
4947, 48ffvelrnd 6846 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((𝐹𝑘)‘𝑥) ∈ ℂ)
503ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → 𝐺:𝑆⟶ℂ)
5150, 48ffvelrnd 6846 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (𝐺𝑥) ∈ ℂ)
5249, 51subcld 10991 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((𝐹𝑘)‘𝑥) − (𝐺𝑥)) ∈ ℂ)
5352abscld 14790 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) ∈ ℝ)
54 ffvelrn 6843 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐹𝑘):𝑆⟶ℂ ∧ 𝑤𝑆) → ((𝐹𝑘)‘𝑤) ∈ ℂ)
5547, 54sylancom 590 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((𝐹𝑘)‘𝑤) ∈ ℂ)
56 ffvelrn 6843 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐺:𝑆⟶ℂ ∧ 𝑤𝑆) → (𝐺𝑤) ∈ ℂ)
5750, 56sylancom 590 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (𝐺𝑤) ∈ ℂ)
5855, 57subcld 10991 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((𝐹𝑘)‘𝑤) − (𝐺𝑤)) ∈ ℂ)
5958abscld 14790 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) ∈ ℝ)
6038adantr 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (𝑦 / 2) ∈ ℝ+)
6160rphalfcld 12437 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((𝑦 / 2) / 2) ∈ ℝ+)
6261rpred 12425 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((𝑦 / 2) / 2) ∈ ℝ)
63 lt2add 11119 . . . . . . . . . . . . . . . . . . . . 21 ((((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) ∈ ℝ ∧ (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) ∈ ℝ) ∧ (((𝑦 / 2) / 2) ∈ ℝ ∧ ((𝑦 / 2) / 2) ∈ ℝ)) → (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2) ∧ (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2)) → ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) < (((𝑦 / 2) / 2) + ((𝑦 / 2) / 2))))
6453, 59, 62, 62, 63syl22anc 836 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2) ∧ (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2)) → ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) < (((𝑦 / 2) / 2) + ((𝑦 / 2) / 2))))
6560rpred 12425 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (𝑦 / 2) ∈ ℝ)
6665recnd 10663 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (𝑦 / 2) ∈ ℂ)
67662halvesd 11877 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((𝑦 / 2) / 2) + ((𝑦 / 2) / 2)) = (𝑦 / 2))
6867breq2d 5070 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) < (((𝑦 / 2) / 2) + ((𝑦 / 2) / 2)) ↔ ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) < (𝑦 / 2)))
6953, 59readdcld 10664 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) ∈ ℝ)
7055, 49subcld 10991 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)) ∈ ℂ)
7170abscld 14790 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) ∈ ℝ)
72 lt2add 11119 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) ∈ ℝ ∧ (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) ∈ ℝ) ∧ ((𝑦 / 2) ∈ ℝ ∧ (𝑦 / 2) ∈ ℝ)) → ((((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) < (𝑦 / 2) ∧ (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2)) → (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) < ((𝑦 / 2) + (𝑦 / 2))))
7369, 71, 65, 65, 72syl22anc 836 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) < (𝑦 / 2) ∧ (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2)) → (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) < ((𝑦 / 2) + (𝑦 / 2))))
74 rpre 12391 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
7574ad2antll 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → 𝑦 ∈ ℝ)
7675ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → 𝑦 ∈ ℝ)
7776recnd 10663 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → 𝑦 ∈ ℂ)
78772halvesd 11877 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((𝑦 / 2) + (𝑦 / 2)) = 𝑦)
7978breq2d 5070 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) < ((𝑦 / 2) + (𝑦 / 2)) ↔ (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) < 𝑦))
8057, 51subcld 10991 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((𝐺𝑤) − (𝐺𝑥)) ∈ ℂ)
8180abscld 14790 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘((𝐺𝑤) − (𝐺𝑥))) ∈ ℝ)
8257, 49subcld 10991 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((𝐺𝑤) − ((𝐹𝑘)‘𝑥)) ∈ ℂ)
8382abscld 14790 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥))) ∈ ℝ)
8453, 83readdcld 10664 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥)))) ∈ ℝ)
8569, 71readdcld 10664 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) ∈ ℝ)
8657, 51, 49abs3difd 14814 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘((𝐺𝑤) − (𝐺𝑥))) ≤ ((abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥))) + (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥)))))
8783recnd 10663 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥))) ∈ ℂ)
8853recnd 10663 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) ∈ ℂ)
8987, 88addcomd 10836 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥))) + (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥)))) = ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥)))))
9086, 89breqtrd 5084 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘((𝐺𝑤) − (𝐺𝑥))) ≤ ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥)))))
9159, 71readdcld 10664 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) ∈ ℝ)
9257, 49, 55abs3difd 14814 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥))) ≤ ((abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑤))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))))
9357, 55abssubd 14807 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑤))) = (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))))
9493oveq1d 7165 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑤))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) = ((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))))
9592, 94breqtrd 5084 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥))) ≤ ((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))))
9683, 91, 53, 95leadd2dd 11249 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥)))) ≤ ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + ((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))))))
9759recnd 10663 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) ∈ ℂ)
9871recnd 10663 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) ∈ ℂ)
9988, 97, 98addassd 10657 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) = ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + ((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))))))
10096, 99breqtrrd 5086 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘((𝐺𝑤) − ((𝐹𝑘)‘𝑥)))) ≤ (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))))
10181, 84, 85, 90, 100letrd 10791 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (abs‘((𝐺𝑤) − (𝐺𝑥))) ≤ (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))))
102 lelttr 10725 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((abs‘((𝐺𝑤) − (𝐺𝑥))) ∈ ℝ ∧ (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((abs‘((𝐺𝑤) − (𝐺𝑥))) ≤ (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) ∧ (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) < 𝑦) → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))
10381, 85, 76, 102syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((abs‘((𝐺𝑤) − (𝐺𝑥))) ≤ (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) ∧ (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) < 𝑦) → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))
104101, 103mpand 693 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) < 𝑦 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))
10579, 104sylbid 242 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) + (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥)))) < ((𝑦 / 2) + (𝑦 / 2)) → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))
10673, 105syld 47 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → ((((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) < (𝑦 / 2) ∧ (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2)) → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))
107106expd 418 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) < (𝑦 / 2) → ((abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2) → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
10868, 107sylbid 242 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) + (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤)))) < (((𝑦 / 2) / 2) + ((𝑦 / 2) / 2)) → ((abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2) → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
10964, 108syld 47 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) → (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2) ∧ (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2)) → ((abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2) → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
110109expdimp 455 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ 𝑤𝑆) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) → ((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) → ((abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2) → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
111110an32s 650 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) ∧ 𝑤𝑆) → ((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) → ((abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2) → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
112111imp 409 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) ∧ 𝑤𝑆) ∧ (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2)) → ((abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2) → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))
113112imim2d 57 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) ∧ 𝑤𝑆) ∧ (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2)) → (((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2)) → ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
114113expimpd 456 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) ∧ 𝑤𝑆) → (((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) ∧ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2))) → ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
115114ralimdva 3177 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) → (∀𝑤𝑆 ((abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) ∧ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2))) → ∀𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
11642, 115syl5bir 245 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) → ((∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) ∧ ∀𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2))) → ∀𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
117116expdimp 455 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) ∧ ∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2)) → (∀𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2)) → ∀𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
118117an32s 650 . . . . . . . . . 10 (((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ ∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2)) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) → (∀𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2)) → ∀𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
119118reximdv 3273 . . . . . . . . 9 (((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ ∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2)) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) → (∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐹𝑘)‘𝑤) − ((𝐹𝑘)‘𝑥))) < (𝑦 / 2)) → ∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
12041, 119mpd 15 . . . . . . . 8 (((((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) ∧ ∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2)) ∧ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2)) → ∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))
121120exp31 422 . . . . . . 7 (((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) → (∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) → ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < ((𝑦 / 2) / 2) → ∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))))
12235, 121mpdd 43 . . . . . 6 (((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) ∧ 𝑘𝑍) → (∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) → ∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
123122rexlimdva 3284 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → (∃𝑘𝑍𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) → ∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
12427, 123syl5 34 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑤𝑆 (abs‘(((𝐹𝑘)‘𝑤) − (𝐺𝑤))) < ((𝑦 / 2) / 2) → ∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦)))
12526, 124mpd 15 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦 ∈ ℝ+)) → ∃𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))
126125ralrimivva 3191 . 2 (𝜑 → ∀𝑥𝑆𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))
127 uzid 12252 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
1285, 127syl 17 . . . . . 6 (𝜑𝑀 ∈ (ℤ𝑀))
129128, 4eleqtrrdi 2924 . . . . 5 (𝜑𝑀𝑍)
1307, 129ffvelrnd 6846 . . . 4 (𝜑 → (𝐹𝑀) ∈ (𝑆cn→ℂ))
131 cncfrss 23493 . . . 4 ((𝐹𝑀) ∈ (𝑆cn→ℂ) → 𝑆 ⊆ ℂ)
132130, 131syl 17 . . 3 (𝜑𝑆 ⊆ ℂ)
133 ssid 3988 . . 3 ℂ ⊆ ℂ
134 elcncf2 23492 . . 3 ((𝑆 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐺 ∈ (𝑆cn→ℂ) ↔ (𝐺:𝑆⟶ℂ ∧ ∀𝑥𝑆𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))))
135132, 133, 134sylancl 588 . 2 (𝜑 → (𝐺 ∈ (𝑆cn→ℂ) ↔ (𝐺:𝑆⟶ℂ ∧ ∀𝑥𝑆𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑆 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐺𝑤) − (𝐺𝑥))) < 𝑦))))
1363, 126, 135mpbir2and 711 1 (𝜑𝐺 ∈ (𝑆cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  wrex 3139  Vcvv 3494  wss 3935   class class class wbr 5058  wf 6345  cfv 6349  (class class class)co 7150  m cmap 8400  cc 10529  cr 10530   + caddc 10534   < clt 10669  cle 10670  cmin 10864   / cdiv 11291  2c2 11686  cz 11975  cuz 12237  +crp 12383  abscabs 14587  cnccncf 23478  𝑢culm 24958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-map 8402  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-cncf 23480  df-ulm 24959
This theorem is referenced by:  psercn2  25005  knoppcn  33838
  Copyright terms: Public domain W3C validator