![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ulmdvlem2 | Structured version Visualization version GIF version |
Description: Lemma for ulmdv 24356. (Contributed by Mario Carneiro, 8-May-2015.) |
Ref | Expression |
---|---|
ulmdv.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
ulmdv.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
ulmdv.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
ulmdv.f | ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑𝑚 𝑋)) |
ulmdv.g | ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) |
ulmdv.l | ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧)) ⇝ (𝐺‘𝑧)) |
ulmdv.u | ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))(⇝𝑢‘𝑋)𝐻) |
Ref | Expression |
---|---|
ulmdvlem2 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → dom (𝑆 D (𝐹‘𝑘)) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 6841 | . . . . . . 7 ⊢ (𝑆 D (𝐹‘𝑘)) ∈ V | |
2 | 1 | rgenw 3062 | . . . . . 6 ⊢ ∀𝑘 ∈ 𝑍 (𝑆 D (𝐹‘𝑘)) ∈ V |
3 | eqid 2760 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))) = (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))) | |
4 | 3 | fnmpt 6181 | . . . . . 6 ⊢ (∀𝑘 ∈ 𝑍 (𝑆 D (𝐹‘𝑘)) ∈ V → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))) Fn 𝑍) |
5 | 2, 4 | mp1i 13 | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))) Fn 𝑍) |
6 | ulmdv.u | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))(⇝𝑢‘𝑋)𝐻) | |
7 | ulmf2 24337 | . . . . 5 ⊢ (((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))) Fn 𝑍 ∧ (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))(⇝𝑢‘𝑋)𝐻) → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))):𝑍⟶(ℂ ↑𝑚 𝑋)) | |
8 | 5, 6, 7 | syl2anc 696 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))):𝑍⟶(ℂ ↑𝑚 𝑋)) |
9 | 3 | fmpt 6544 | . . . 4 ⊢ (∀𝑘 ∈ 𝑍 (𝑆 D (𝐹‘𝑘)) ∈ (ℂ ↑𝑚 𝑋) ↔ (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))):𝑍⟶(ℂ ↑𝑚 𝑋)) |
10 | 8, 9 | sylibr 224 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ 𝑍 (𝑆 D (𝐹‘𝑘)) ∈ (ℂ ↑𝑚 𝑋)) |
11 | 10 | r19.21bi 3070 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑆 D (𝐹‘𝑘)) ∈ (ℂ ↑𝑚 𝑋)) |
12 | elmapi 8045 | . 2 ⊢ ((𝑆 D (𝐹‘𝑘)) ∈ (ℂ ↑𝑚 𝑋) → (𝑆 D (𝐹‘𝑘)):𝑋⟶ℂ) | |
13 | fdm 6212 | . 2 ⊢ ((𝑆 D (𝐹‘𝑘)):𝑋⟶ℂ → dom (𝑆 D (𝐹‘𝑘)) = 𝑋) | |
14 | 11, 12, 13 | 3syl 18 | 1 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → dom (𝑆 D (𝐹‘𝑘)) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∀wral 3050 Vcvv 3340 {cpr 4323 class class class wbr 4804 ↦ cmpt 4881 dom cdm 5266 Fn wfn 6044 ⟶wf 6045 ‘cfv 6049 (class class class)co 6813 ↑𝑚 cmap 8023 ℂcc 10126 ℝcr 10127 ℤcz 11569 ℤ≥cuz 11879 ⇝ cli 14414 D cdv 23826 ⇝𝑢culm 24329 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-1st 7333 df-2nd 7334 df-map 8025 df-pm 8026 df-neg 10461 df-z 11570 df-uz 11880 df-ulm 24330 |
This theorem is referenced by: ulmdvlem3 24355 ulmdv 24356 |
Copyright terms: Public domain | W3C validator |