MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmdvlem2 Structured version   Visualization version   GIF version

Theorem ulmdvlem2 24354
Description: Lemma for ulmdv 24356. (Contributed by Mario Carneiro, 8-May-2015.)
Hypotheses
Ref Expression
ulmdv.z 𝑍 = (ℤ𝑀)
ulmdv.s (𝜑𝑆 ∈ {ℝ, ℂ})
ulmdv.m (𝜑𝑀 ∈ ℤ)
ulmdv.f (𝜑𝐹:𝑍⟶(ℂ ↑𝑚 𝑋))
ulmdv.g (𝜑𝐺:𝑋⟶ℂ)
ulmdv.l ((𝜑𝑧𝑋) → (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) ⇝ (𝐺𝑧))
ulmdv.u (𝜑 → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))(⇝𝑢𝑋)𝐻)
Assertion
Ref Expression
ulmdvlem2 ((𝜑𝑘𝑍) → dom (𝑆 D (𝐹𝑘)) = 𝑋)
Distinct variable groups:   𝑧,𝑘,𝐹   𝑧,𝐺   𝑧,𝐻   𝑘,𝑀   𝜑,𝑘,𝑧   𝑆,𝑘,𝑧   𝑘,𝑋,𝑧   𝑘,𝑍,𝑧
Allowed substitution hints:   𝐺(𝑘)   𝐻(𝑘)   𝑀(𝑧)

Proof of Theorem ulmdvlem2
StepHypRef Expression
1 ovex 6841 . . . . . . 7 (𝑆 D (𝐹𝑘)) ∈ V
21rgenw 3062 . . . . . 6 𝑘𝑍 (𝑆 D (𝐹𝑘)) ∈ V
3 eqid 2760 . . . . . . 7 (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))) = (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))
43fnmpt 6181 . . . . . 6 (∀𝑘𝑍 (𝑆 D (𝐹𝑘)) ∈ V → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))) Fn 𝑍)
52, 4mp1i 13 . . . . 5 (𝜑 → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))) Fn 𝑍)
6 ulmdv.u . . . . 5 (𝜑 → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))(⇝𝑢𝑋)𝐻)
7 ulmf2 24337 . . . . 5 (((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))) Fn 𝑍 ∧ (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))(⇝𝑢𝑋)𝐻) → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))):𝑍⟶(ℂ ↑𝑚 𝑋))
85, 6, 7syl2anc 696 . . . 4 (𝜑 → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))):𝑍⟶(ℂ ↑𝑚 𝑋))
93fmpt 6544 . . . 4 (∀𝑘𝑍 (𝑆 D (𝐹𝑘)) ∈ (ℂ ↑𝑚 𝑋) ↔ (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))):𝑍⟶(ℂ ↑𝑚 𝑋))
108, 9sylibr 224 . . 3 (𝜑 → ∀𝑘𝑍 (𝑆 D (𝐹𝑘)) ∈ (ℂ ↑𝑚 𝑋))
1110r19.21bi 3070 . 2 ((𝜑𝑘𝑍) → (𝑆 D (𝐹𝑘)) ∈ (ℂ ↑𝑚 𝑋))
12 elmapi 8045 . 2 ((𝑆 D (𝐹𝑘)) ∈ (ℂ ↑𝑚 𝑋) → (𝑆 D (𝐹𝑘)):𝑋⟶ℂ)
13 fdm 6212 . 2 ((𝑆 D (𝐹𝑘)):𝑋⟶ℂ → dom (𝑆 D (𝐹𝑘)) = 𝑋)
1411, 12, 133syl 18 1 ((𝜑𝑘𝑍) → dom (𝑆 D (𝐹𝑘)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  wral 3050  Vcvv 3340  {cpr 4323   class class class wbr 4804  cmpt 4881  dom cdm 5266   Fn wfn 6044  wf 6045  cfv 6049  (class class class)co 6813  𝑚 cmap 8023  cc 10126  cr 10127  cz 11569  cuz 11879  cli 14414   D cdv 23826  𝑢culm 24329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-1st 7333  df-2nd 7334  df-map 8025  df-pm 8026  df-neg 10461  df-z 11570  df-uz 11880  df-ulm 24330
This theorem is referenced by:  ulmdvlem3  24355  ulmdv  24356
  Copyright terms: Public domain W3C validator