MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmdvlem3 Structured version   Visualization version   GIF version

Theorem ulmdvlem3 24375
Description: Lemma for ulmdv 24376. (Contributed by Mario Carneiro, 8-May-2015.) (Proof shortened by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
ulmdv.z 𝑍 = (ℤ𝑀)
ulmdv.s (𝜑𝑆 ∈ {ℝ, ℂ})
ulmdv.m (𝜑𝑀 ∈ ℤ)
ulmdv.f (𝜑𝐹:𝑍⟶(ℂ ↑𝑚 𝑋))
ulmdv.g (𝜑𝐺:𝑋⟶ℂ)
ulmdv.l ((𝜑𝑧𝑋) → (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) ⇝ (𝐺𝑧))
ulmdv.u (𝜑 → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))(⇝𝑢𝑋)𝐻)
Assertion
Ref Expression
ulmdvlem3 ((𝜑𝑧𝑋) → 𝑧(𝑆 D 𝐺)(𝐻𝑧))
Distinct variable groups:   𝑧,𝑘,𝐹   𝑧,𝐺   𝑧,𝐻   𝑘,𝑀   𝜑,𝑘,𝑧   𝑆,𝑘,𝑧   𝑘,𝑋,𝑧   𝑘,𝑍,𝑧
Allowed substitution hints:   𝐺(𝑘)   𝐻(𝑘)   𝑀(𝑧)

Proof of Theorem ulmdvlem3
Dummy variables 𝑗 𝑚 𝑛 𝑠 𝑢 𝑣 𝑤 𝑥 𝑦 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 biidd 252 . . . 4 (𝑘 = 𝑀 → (𝑋 ⊆ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ↔ 𝑋 ⊆ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋)))
2 ulmdv.z . . . . . . 7 𝑍 = (ℤ𝑀)
3 ulmdv.s . . . . . . 7 (𝜑𝑆 ∈ {ℝ, ℂ})
4 ulmdv.m . . . . . . 7 (𝜑𝑀 ∈ ℤ)
5 ulmdv.f . . . . . . 7 (𝜑𝐹:𝑍⟶(ℂ ↑𝑚 𝑋))
6 ulmdv.g . . . . . . 7 (𝜑𝐺:𝑋⟶ℂ)
7 ulmdv.l . . . . . . 7 ((𝜑𝑧𝑋) → (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) ⇝ (𝐺𝑧))
8 ulmdv.u . . . . . . 7 (𝜑 → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))(⇝𝑢𝑋)𝐻)
92, 3, 4, 5, 6, 7, 8ulmdvlem2 24374 . . . . . 6 ((𝜑𝑘𝑍) → dom (𝑆 D (𝐹𝑘)) = 𝑋)
10 recnprss 23887 . . . . . . . . 9 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
113, 10syl 17 . . . . . . . 8 (𝜑𝑆 ⊆ ℂ)
1211adantr 472 . . . . . . 7 ((𝜑𝑘𝑍) → 𝑆 ⊆ ℂ)
135ffvelrnda 6523 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ (ℂ ↑𝑚 𝑋))
14 elmapi 8047 . . . . . . . 8 ((𝐹𝑘) ∈ (ℂ ↑𝑚 𝑋) → (𝐹𝑘):𝑋⟶ℂ)
1513, 14syl 17 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐹𝑘):𝑋⟶ℂ)
16 dvbsss 23885 . . . . . . . 8 dom (𝑆 D (𝐹𝑘)) ⊆ 𝑆
179, 16syl6eqssr 3797 . . . . . . 7 ((𝜑𝑘𝑍) → 𝑋𝑆)
18 eqid 2760 . . . . . . 7 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
19 eqid 2760 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2012, 15, 17, 18, 19dvbssntr 23883 . . . . . 6 ((𝜑𝑘𝑍) → dom (𝑆 D (𝐹𝑘)) ⊆ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋))
219, 20eqsstr3d 3781 . . . . 5 ((𝜑𝑘𝑍) → 𝑋 ⊆ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋))
2221ralrimiva 3104 . . . 4 (𝜑 → ∀𝑘𝑍 𝑋 ⊆ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋))
23 uzid 11914 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
244, 23syl 17 . . . . 5 (𝜑𝑀 ∈ (ℤ𝑀))
2524, 2syl6eleqr 2850 . . . 4 (𝜑𝑀𝑍)
261, 22, 25rspcdva 3455 . . 3 (𝜑𝑋 ⊆ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋))
2726sselda 3744 . 2 ((𝜑𝑧𝑋) → 𝑧 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋))
28 ulmcl 24354 . . . . 5 ((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))(⇝𝑢𝑋)𝐻𝐻:𝑋⟶ℂ)
298, 28syl 17 . . . 4 (𝜑𝐻:𝑋⟶ℂ)
3029ffvelrnda 6523 . . 3 ((𝜑𝑧𝑋) → (𝐻𝑧) ∈ ℂ)
31 breq2 4808 . . . . . . . 8 (𝑠 = ((𝑟 / 2) / 2) → ((abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < 𝑠 ↔ (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2)))
32312ralbidv 3127 . . . . . . 7 (𝑠 = ((𝑟 / 2) / 2) → (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < 𝑠 ↔ ∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2)))
3332rexralbidv 3196 . . . . . 6 (𝑠 = ((𝑟 / 2) / 2) → (∃𝑗𝑍𝑛 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < 𝑠 ↔ ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2)))
34 ulmrel 24351 . . . . . . . . . 10 Rel (⇝𝑢𝑋)
35 releldm 5513 . . . . . . . . . 10 ((Rel (⇝𝑢𝑋) ∧ (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))(⇝𝑢𝑋)𝐻) → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))) ∈ dom (⇝𝑢𝑋))
3634, 8, 35sylancr 698 . . . . . . . . 9 (𝜑 → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))) ∈ dom (⇝𝑢𝑋))
37 ulmscl 24352 . . . . . . . . . . 11 ((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))(⇝𝑢𝑋)𝐻𝑋 ∈ V)
388, 37syl 17 . . . . . . . . . 10 (𝜑𝑋 ∈ V)
39 ovex 6842 . . . . . . . . . . . . 13 (𝑆 D (𝐹𝑘)) ∈ V
4039rgenw 3062 . . . . . . . . . . . 12 𝑘𝑍 (𝑆 D (𝐹𝑘)) ∈ V
41 eqid 2760 . . . . . . . . . . . . 13 (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))) = (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))
4241fnmpt 6181 . . . . . . . . . . . 12 (∀𝑘𝑍 (𝑆 D (𝐹𝑘)) ∈ V → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))) Fn 𝑍)
4340, 42mp1i 13 . . . . . . . . . . 11 (𝜑 → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))) Fn 𝑍)
44 ulmf2 24357 . . . . . . . . . . 11 (((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))) Fn 𝑍 ∧ (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))(⇝𝑢𝑋)𝐻) → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))):𝑍⟶(ℂ ↑𝑚 𝑋))
4543, 8, 44syl2anc 696 . . . . . . . . . 10 (𝜑 → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))):𝑍⟶(ℂ ↑𝑚 𝑋))
462, 4, 38, 45ulmcau2 24369 . . . . . . . . 9 (𝜑 → ((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))) ∈ dom (⇝𝑢𝑋) ↔ ∀𝑠 ∈ ℝ+𝑗𝑍𝑛 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘((((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑛)‘𝑥) − (((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑚)‘𝑥))) < 𝑠))
4736, 46mpbid 222 . . . . . . . 8 (𝜑 → ∀𝑠 ∈ ℝ+𝑗𝑍𝑛 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘((((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑛)‘𝑥) − (((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑚)‘𝑥))) < 𝑠)
482uztrn2 11917 . . . . . . . . . . . . . . . . . 18 ((𝑗𝑍𝑛 ∈ (ℤ𝑗)) → 𝑛𝑍)
4948ad2ant2lr 801 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗𝑍) ∧ (𝑛 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑛))) → 𝑛𝑍)
50 fveq2 6353 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
5150oveq2d 6830 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑛 → (𝑆 D (𝐹𝑘)) = (𝑆 D (𝐹𝑛)))
52 ovex 6842 . . . . . . . . . . . . . . . . . 18 (𝑆 D (𝐹𝑛)) ∈ V
5351, 41, 52fvmpt 6445 . . . . . . . . . . . . . . . . 17 (𝑛𝑍 → ((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑛) = (𝑆 D (𝐹𝑛)))
5449, 53syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑍) ∧ (𝑛 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑛))) → ((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑛) = (𝑆 D (𝐹𝑛)))
5554fveq1d 6355 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ (𝑛 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑛))) → (((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑛)‘𝑥) = ((𝑆 D (𝐹𝑛))‘𝑥))
56 simprr 813 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗𝑍) ∧ (𝑛 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑛))) → 𝑚 ∈ (ℤ𝑛))
572uztrn2 11917 . . . . . . . . . . . . . . . . . 18 ((𝑛𝑍𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
5849, 56, 57syl2anc 696 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗𝑍) ∧ (𝑛 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑛))) → 𝑚𝑍)
59 fveq2 6353 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
6059oveq2d 6830 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑚 → (𝑆 D (𝐹𝑘)) = (𝑆 D (𝐹𝑚)))
61 ovex 6842 . . . . . . . . . . . . . . . . . 18 (𝑆 D (𝐹𝑚)) ∈ V
6260, 41, 61fvmpt 6445 . . . . . . . . . . . . . . . . 17 (𝑚𝑍 → ((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑚) = (𝑆 D (𝐹𝑚)))
6358, 62syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑍) ∧ (𝑛 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑛))) → ((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑚) = (𝑆 D (𝐹𝑚)))
6463fveq1d 6355 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ (𝑛 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑛))) → (((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑚)‘𝑥) = ((𝑆 D (𝐹𝑚))‘𝑥))
6555, 64oveq12d 6832 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑍) ∧ (𝑛 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑛))) → ((((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑛)‘𝑥) − (((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑚)‘𝑥)) = (((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥)))
6665fveq2d 6357 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ (𝑛 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑛))) → (abs‘((((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑛)‘𝑥) − (((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑚)‘𝑥))) = (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))))
6766breq1d 4814 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ (𝑛 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑛))) → ((abs‘((((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑛)‘𝑥) − (((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑚)‘𝑥))) < 𝑠 ↔ (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < 𝑠))
6867ralbidv 3124 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ (𝑛 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑛))) → (∀𝑥𝑋 (abs‘((((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑛)‘𝑥) − (((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑚)‘𝑥))) < 𝑠 ↔ ∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < 𝑠))
69682ralbidva 3126 . . . . . . . . . 10 ((𝜑𝑗𝑍) → (∀𝑛 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘((((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑛)‘𝑥) − (((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑚)‘𝑥))) < 𝑠 ↔ ∀𝑛 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < 𝑠))
7069rexbidva 3187 . . . . . . . . 9 (𝜑 → (∃𝑗𝑍𝑛 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘((((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑛)‘𝑥) − (((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑚)‘𝑥))) < 𝑠 ↔ ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < 𝑠))
7170ralbidv 3124 . . . . . . . 8 (𝜑 → (∀𝑠 ∈ ℝ+𝑗𝑍𝑛 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘((((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑛)‘𝑥) − (((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑚)‘𝑥))) < 𝑠 ↔ ∀𝑠 ∈ ℝ+𝑗𝑍𝑛 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < 𝑠))
7247, 71mpbid 222 . . . . . . 7 (𝜑 → ∀𝑠 ∈ ℝ+𝑗𝑍𝑛 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < 𝑠)
7372ad2antrr 764 . . . . . 6 (((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) → ∀𝑠 ∈ ℝ+𝑗𝑍𝑛 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < 𝑠)
74 rphalfcl 12071 . . . . . . . 8 (𝑟 ∈ ℝ+ → (𝑟 / 2) ∈ ℝ+)
7574adantl 473 . . . . . . 7 (((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑟 / 2) ∈ ℝ+)
76 rphalfcl 12071 . . . . . . 7 ((𝑟 / 2) ∈ ℝ+ → ((𝑟 / 2) / 2) ∈ ℝ+)
7775, 76syl 17 . . . . . 6 (((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) → ((𝑟 / 2) / 2) ∈ ℝ+)
7833, 73, 77rspcdva 3455 . . . . 5 (((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) → ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2))
794ad2antrr 764 . . . . . 6 (((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) → 𝑀 ∈ ℤ)
8051fveq1d 6355 . . . . . . . 8 (𝑘 = 𝑛 → ((𝑆 D (𝐹𝑘))‘𝑧) = ((𝑆 D (𝐹𝑛))‘𝑧))
81 eqid 2760 . . . . . . . 8 (𝑘𝑍 ↦ ((𝑆 D (𝐹𝑘))‘𝑧)) = (𝑘𝑍 ↦ ((𝑆 D (𝐹𝑘))‘𝑧))
82 fvex 6363 . . . . . . . 8 ((𝑆 D (𝐹𝑛))‘𝑧) ∈ V
8380, 81, 82fvmpt 6445 . . . . . . 7 (𝑛𝑍 → ((𝑘𝑍 ↦ ((𝑆 D (𝐹𝑘))‘𝑧))‘𝑛) = ((𝑆 D (𝐹𝑛))‘𝑧))
8483adantl 473 . . . . . 6 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → ((𝑘𝑍 ↦ ((𝑆 D (𝐹𝑘))‘𝑧))‘𝑛) = ((𝑆 D (𝐹𝑛))‘𝑧))
8545ad2antrr 764 . . . . . . 7 (((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))):𝑍⟶(ℂ ↑𝑚 𝑋))
86 simplr 809 . . . . . . 7 (((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) → 𝑧𝑋)
87 fvex 6363 . . . . . . . . . 10 (ℤ𝑀) ∈ V
882, 87eqeltri 2835 . . . . . . . . 9 𝑍 ∈ V
8988mptex 6651 . . . . . . . 8 (𝑘𝑍 ↦ ((𝑆 D (𝐹𝑘))‘𝑧)) ∈ V
9089a1i 11 . . . . . . 7 (((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑘𝑍 ↦ ((𝑆 D (𝐹𝑘))‘𝑧)) ∈ V)
9153adantl 473 . . . . . . . . 9 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → ((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑛) = (𝑆 D (𝐹𝑛)))
9291fveq1d 6355 . . . . . . . 8 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → (((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑛)‘𝑧) = ((𝑆 D (𝐹𝑛))‘𝑧))
9392, 84eqtr4d 2797 . . . . . . 7 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → (((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑛)‘𝑧) = ((𝑘𝑍 ↦ ((𝑆 D (𝐹𝑘))‘𝑧))‘𝑛))
948ad2antrr 764 . . . . . . 7 (((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))(⇝𝑢𝑋)𝐻)
952, 79, 85, 86, 90, 93, 94ulmclm 24360 . . . . . 6 (((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑘𝑍 ↦ ((𝑆 D (𝐹𝑘))‘𝑧)) ⇝ (𝐻𝑧))
962, 79, 75, 84, 95climi2 14461 . . . . 5 (((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) → ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2))
972rexanuz2 14308 . . . . . . 7 (∃𝑗𝑍𝑛 ∈ (ℤ𝑗)(∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) ↔ (∃𝑗𝑍𝑛 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)))
982r19.2uz 14310 . . . . . . 7 (∃𝑗𝑍𝑛 ∈ (ℤ𝑗)(∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) → ∃𝑛𝑍 (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)))
9997, 98sylbir 225 . . . . . 6 ((∃𝑗𝑍𝑛 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) → ∃𝑛𝑍 (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)))
100 fveq2 6353 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑣 → ((𝐹𝑛)‘𝑦) = ((𝐹𝑛)‘𝑣))
101100oveq1d 6829 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑣 → (((𝐹𝑛)‘𝑦) − ((𝐹𝑛)‘𝑧)) = (((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)))
102 oveq1 6821 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑣 → (𝑦𝑧) = (𝑣𝑧))
103101, 102oveq12d 6832 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑣 → ((((𝐹𝑛)‘𝑦) − ((𝐹𝑛)‘𝑧)) / (𝑦𝑧)) = ((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)))
104 eqid 2760 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹𝑛)‘𝑦) − ((𝐹𝑛)‘𝑧)) / (𝑦𝑧))) = (𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹𝑛)‘𝑦) − ((𝐹𝑛)‘𝑧)) / (𝑦𝑧)))
105 ovex 6842 . . . . . . . . . . . . . . . . 17 ((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) ∈ V
106103, 104, 105fvmpt 6445 . . . . . . . . . . . . . . . 16 (𝑣 ∈ (𝑋 ∖ {𝑧}) → ((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹𝑛)‘𝑦) − ((𝐹𝑛)‘𝑧)) / (𝑦𝑧)))‘𝑣) = ((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)))
107106oveq1d 6829 . . . . . . . . . . . . . . 15 (𝑣 ∈ (𝑋 ∖ {𝑧}) → (((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹𝑛)‘𝑦) − ((𝐹𝑛)‘𝑧)) / (𝑦𝑧)))‘𝑣) − ((𝑆 D (𝐹𝑛))‘𝑧)) = (((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧)))
108107fveq2d 6357 . . . . . . . . . . . . . 14 (𝑣 ∈ (𝑋 ∖ {𝑧}) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹𝑛)‘𝑦) − ((𝐹𝑛)‘𝑧)) / (𝑦𝑧)))‘𝑣) − ((𝑆 D (𝐹𝑛))‘𝑧))) = (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))))
109 id 22 . . . . . . . . . . . . . 14 (𝑠 = ((𝑟 / 2) / 2) → 𝑠 = ((𝑟 / 2) / 2))
110108, 109breqan12rd 4821 . . . . . . . . . . . . 13 ((𝑠 = ((𝑟 / 2) / 2) ∧ 𝑣 ∈ (𝑋 ∖ {𝑧})) → ((abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹𝑛)‘𝑦) − ((𝐹𝑛)‘𝑧)) / (𝑦𝑧)))‘𝑣) − ((𝑆 D (𝐹𝑛))‘𝑧))) < 𝑠 ↔ (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)))
111110imbi2d 329 . . . . . . . . . . . 12 ((𝑠 = ((𝑟 / 2) / 2) ∧ 𝑣 ∈ (𝑋 ∖ {𝑧})) → (((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹𝑛)‘𝑦) − ((𝐹𝑛)‘𝑧)) / (𝑦𝑧)))‘𝑣) − ((𝑆 D (𝐹𝑛))‘𝑧))) < 𝑠) ↔ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2))))
112111ralbidva 3123 . . . . . . . . . . 11 (𝑠 = ((𝑟 / 2) / 2) → (∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹𝑛)‘𝑦) − ((𝐹𝑛)‘𝑧)) / (𝑦𝑧)))‘𝑣) − ((𝑆 D (𝐹𝑛))‘𝑧))) < 𝑠) ↔ ∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2))))
113112rexbidv 3190 . . . . . . . . . 10 (𝑠 = ((𝑟 / 2) / 2) → (∃𝑤 ∈ ℝ+𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹𝑛)‘𝑦) − ((𝐹𝑛)‘𝑧)) / (𝑦𝑧)))‘𝑣) − ((𝑆 D (𝐹𝑛))‘𝑧))) < 𝑠) ↔ ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2))))
114 simpllr 817 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → 𝑧𝑋)
11585ffvelrnda 6523 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → ((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑛) ∈ (ℂ ↑𝑚 𝑋))
11691, 115eqeltrrd 2840 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → (𝑆 D (𝐹𝑛)) ∈ (ℂ ↑𝑚 𝑋))
117 elmapi 8047 . . . . . . . . . . . . . . . . 17 ((𝑆 D (𝐹𝑛)) ∈ (ℂ ↑𝑚 𝑋) → (𝑆 D (𝐹𝑛)):𝑋⟶ℂ)
118 fdm 6212 . . . . . . . . . . . . . . . . 17 ((𝑆 D (𝐹𝑛)):𝑋⟶ℂ → dom (𝑆 D (𝐹𝑛)) = 𝑋)
119116, 117, 1183syl 18 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → dom (𝑆 D (𝐹𝑛)) = 𝑋)
120114, 119eleqtrrd 2842 . . . . . . . . . . . . . . 15 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → 𝑧 ∈ dom (𝑆 D (𝐹𝑛)))
1213ad3antrrr 768 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → 𝑆 ∈ {ℝ, ℂ})
122 dvfg 23889 . . . . . . . . . . . . . . . 16 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D (𝐹𝑛)):dom (𝑆 D (𝐹𝑛))⟶ℂ)
123 ffun 6209 . . . . . . . . . . . . . . . 16 ((𝑆 D (𝐹𝑛)):dom (𝑆 D (𝐹𝑛))⟶ℂ → Fun (𝑆 D (𝐹𝑛)))
124 funfvbrb 6494 . . . . . . . . . . . . . . . 16 (Fun (𝑆 D (𝐹𝑛)) → (𝑧 ∈ dom (𝑆 D (𝐹𝑛)) ↔ 𝑧(𝑆 D (𝐹𝑛))((𝑆 D (𝐹𝑛))‘𝑧)))
125121, 122, 123, 1244syl 19 . . . . . . . . . . . . . . 15 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → (𝑧 ∈ dom (𝑆 D (𝐹𝑛)) ↔ 𝑧(𝑆 D (𝐹𝑛))((𝑆 D (𝐹𝑛))‘𝑧)))
126120, 125mpbid 222 . . . . . . . . . . . . . 14 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → 𝑧(𝑆 D (𝐹𝑛))((𝑆 D (𝐹𝑛))‘𝑧))
127121, 10syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → 𝑆 ⊆ ℂ)
1285ad2antrr 764 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) → 𝐹:𝑍⟶(ℂ ↑𝑚 𝑋))
129128ffvelrnda 6523 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → (𝐹𝑛) ∈ (ℂ ↑𝑚 𝑋))
130 elmapi 8047 . . . . . . . . . . . . . . . 16 ((𝐹𝑛) ∈ (ℂ ↑𝑚 𝑋) → (𝐹𝑛):𝑋⟶ℂ)
131129, 130syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → (𝐹𝑛):𝑋⟶ℂ)
132 biidd 252 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑀 → (𝑋𝑆𝑋𝑆))
13317ralrimiva 3104 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑘𝑍 𝑋𝑆)
134132, 133, 25rspcdva 3455 . . . . . . . . . . . . . . . 16 (𝜑𝑋𝑆)
135134ad3antrrr 768 . . . . . . . . . . . . . . 15 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → 𝑋𝑆)
13618, 19, 104, 127, 131, 135eldv 23881 . . . . . . . . . . . . . 14 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → (𝑧(𝑆 D (𝐹𝑛))((𝑆 D (𝐹𝑛))‘𝑧) ↔ (𝑧 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ∧ ((𝑆 D (𝐹𝑛))‘𝑧) ∈ ((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹𝑛)‘𝑦) − ((𝐹𝑛)‘𝑧)) / (𝑦𝑧))) lim 𝑧))))
137126, 136mpbid 222 . . . . . . . . . . . . 13 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → (𝑧 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ∧ ((𝑆 D (𝐹𝑛))‘𝑧) ∈ ((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹𝑛)‘𝑦) − ((𝐹𝑛)‘𝑧)) / (𝑦𝑧))) lim 𝑧)))
138137simprd 482 . . . . . . . . . . . 12 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → ((𝑆 D (𝐹𝑛))‘𝑧) ∈ ((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹𝑛)‘𝑦) − ((𝐹𝑛)‘𝑧)) / (𝑦𝑧))) lim 𝑧))
139134adantr 472 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝑋) → 𝑋𝑆)
14011adantr 472 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝑋) → 𝑆 ⊆ ℂ)
141139, 140sstrd 3754 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑋) → 𝑋 ⊆ ℂ)
142141ad2antrr 764 . . . . . . . . . . . . . . 15 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → 𝑋 ⊆ ℂ)
143131, 142, 114dvlem 23879 . . . . . . . . . . . . . 14 (((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) ∧ 𝑦 ∈ (𝑋 ∖ {𝑧})) → ((((𝐹𝑛)‘𝑦) − ((𝐹𝑛)‘𝑧)) / (𝑦𝑧)) ∈ ℂ)
144143, 104fmptd 6549 . . . . . . . . . . . . 13 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → (𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹𝑛)‘𝑦) − ((𝐹𝑛)‘𝑧)) / (𝑦𝑧))):(𝑋 ∖ {𝑧})⟶ℂ)
145142ssdifssd 3891 . . . . . . . . . . . . 13 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → (𝑋 ∖ {𝑧}) ⊆ ℂ)
146142, 114sseldd 3745 . . . . . . . . . . . . 13 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → 𝑧 ∈ ℂ)
147144, 145, 146ellimc3 23862 . . . . . . . . . . . 12 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → (((𝑆 D (𝐹𝑛))‘𝑧) ∈ ((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹𝑛)‘𝑦) − ((𝐹𝑛)‘𝑧)) / (𝑦𝑧))) lim 𝑧) ↔ (((𝑆 D (𝐹𝑛))‘𝑧) ∈ ℂ ∧ ∀𝑠 ∈ ℝ+𝑤 ∈ ℝ+𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹𝑛)‘𝑦) − ((𝐹𝑛)‘𝑧)) / (𝑦𝑧)))‘𝑣) − ((𝑆 D (𝐹𝑛))‘𝑧))) < 𝑠))))
148138, 147mpbid 222 . . . . . . . . . . 11 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → (((𝑆 D (𝐹𝑛))‘𝑧) ∈ ℂ ∧ ∀𝑠 ∈ ℝ+𝑤 ∈ ℝ+𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹𝑛)‘𝑦) − ((𝐹𝑛)‘𝑧)) / (𝑦𝑧)))‘𝑣) − ((𝑆 D (𝐹𝑛))‘𝑧))) < 𝑠)))
149148simprd 482 . . . . . . . . . 10 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → ∀𝑠 ∈ ℝ+𝑤 ∈ ℝ+𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹𝑛)‘𝑦) − ((𝐹𝑛)‘𝑧)) / (𝑦𝑧)))‘𝑣) − ((𝑆 D (𝐹𝑛))‘𝑧))) < 𝑠))
15077adantr 472 . . . . . . . . . 10 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → ((𝑟 / 2) / 2) ∈ ℝ+)
151113, 149, 150rspcdva 3455 . . . . . . . . 9 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)))
152151adantrr 755 . . . . . . . 8 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)))) → ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)))
153 anass 684 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)))) ∧ (𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋))) ∧ 𝑤 ∈ ℝ+) ↔ ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)))) ∧ ((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+)))
154 df-3an 1074 . . . . . . . . . . . . . . . . . . 19 ((𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢)))) ↔ ((𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2))) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢)))))
155 anass 684 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ↔ (𝜑 ∧ (𝑧𝑋𝑟 ∈ ℝ+)))
1567ralrimiva 3104 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ∀𝑧𝑋 (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) ⇝ (𝐺𝑧))
157 fveq2 6353 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 = 𝑠 → ((𝐹𝑘)‘𝑧) = ((𝐹𝑘)‘𝑠))
158157mpteq2dv 4897 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 = 𝑠 → (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) = (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑠)))
159 fveq2 6353 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 = 𝑠 → (𝐺𝑧) = (𝐺𝑠))
160158, 159breq12d 4817 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 = 𝑠 → ((𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) ⇝ (𝐺𝑧) ↔ (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑠)) ⇝ (𝐺𝑠)))
161160rspccva 3448 . . . . . . . . . . . . . . . . . . . . . . 23 ((∀𝑧𝑋 (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) ⇝ (𝐺𝑧) ∧ 𝑠𝑋) → (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑠)) ⇝ (𝐺𝑠))
162156, 161sylan 489 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑠𝑋) → (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑠)) ⇝ (𝐺𝑠))
163 simprll 821 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ((𝑧𝑋𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢)))))) → 𝑧𝑋)
164 simprlr 822 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ((𝑧𝑋𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢)))))) → 𝑟 ∈ ℝ+)
165 simprr3 1277 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ ((𝑧𝑋𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢)))))) → (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢))))
166 simplll 815 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢))) → 𝑢 ∈ ℝ+)
167165, 166syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ((𝑧𝑋𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢)))))) → 𝑢 ∈ ℝ+)
168 simplr 809 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢))) → 𝑤 ∈ ℝ+)
169165, 168syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ((𝑧𝑋𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢)))))) → 𝑤 ∈ ℝ+)
170 simpllr 817 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢))) → (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋))
171165, 170syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ ((𝑧𝑋𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢)))))) → (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋))
172171simpld 477 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ((𝑧𝑋𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢)))))) → 𝑢 < 𝑤)
173171simprd 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ((𝑧𝑋𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢)))))) → (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)
174 simpr3 1238 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢))) → (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢))
175165, 174syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ ((𝑧𝑋𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢)))))) → (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢))
176175simprd 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ((𝑧𝑋𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢)))))) → (abs‘(𝑣𝑧)) < 𝑢)
177 simprr1 1273 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ((𝑧𝑋𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢)))))) → 𝑛𝑍)
178 simprr2 1275 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ ((𝑧𝑋𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢)))))) → (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)))
179178simpld 477 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ((𝑧𝑋𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢)))))) → ∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2))
180178simprd 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ((𝑧𝑋𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢)))))) → (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2))
181 simpr1 1234 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢))) → 𝑣 ∈ (𝑋 ∖ {𝑧}))
182165, 181syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ ((𝑧𝑋𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢)))))) → 𝑣 ∈ (𝑋 ∖ {𝑧}))
183182eldifad 3727 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ((𝑧𝑋𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢)))))) → 𝑣𝑋)
184175simpld 477 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ((𝑧𝑋𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢)))))) → 𝑣𝑧)
185 simpr2 1236 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢))) → ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)))
186165, 185syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ ((𝑧𝑋𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢)))))) → ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)))
187184, 186mpand 713 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ((𝑧𝑋𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢)))))) → ((abs‘(𝑣𝑧)) < 𝑤 → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)))
1882, 3, 4, 5, 6, 162, 8, 163, 164, 167, 169, 172, 173, 176, 177, 179, 180, 183, 184, 187ulmdvlem1 24373 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ((𝑧𝑋𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢)))))) → (abs‘((((𝐺𝑣) − (𝐺𝑧)) / (𝑣𝑧)) − (𝐻𝑧))) < 𝑟)
189188anassrs 683 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢))))) → (abs‘((((𝐺𝑣) − (𝐺𝑧)) / (𝑣𝑧)) − (𝐻𝑧))) < 𝑟)
190155, 189sylanb 490 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢))))) → (abs‘((((𝐺𝑣) − (𝐺𝑧)) / (𝑣𝑧)) − (𝐻𝑧))) < 𝑟)
191154, 190sylan2br 494 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2))) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢))))) → (abs‘((((𝐺𝑣) − (𝐺𝑧)) / (𝑣𝑧)) − (𝐻𝑧))) < 𝑟)
192191anassrs 683 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)))) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢)))) → (abs‘((((𝐺𝑣) − (𝐺𝑧)) / (𝑣𝑧)) − (𝐻𝑧))) < 𝑟)
193192anassrs 683 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)))) ∧ ((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+)) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢))) → (abs‘((((𝐺𝑣) − (𝐺𝑧)) / (𝑣𝑧)) − (𝐻𝑧))) < 𝑟)
194153, 193sylanb 490 . . . . . . . . . . . . . . 15 (((((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)))) ∧ (𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋))) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢))) → (abs‘((((𝐺𝑣) − (𝐺𝑧)) / (𝑣𝑧)) − (𝐻𝑧))) < 𝑟)
1951943exp2 1448 . . . . . . . . . . . . . 14 ((((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)))) ∧ (𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋))) ∧ 𝑤 ∈ ℝ+) → (𝑣 ∈ (𝑋 ∖ {𝑧}) → (((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) → ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢) → (abs‘((((𝐺𝑣) − (𝐺𝑧)) / (𝑣𝑧)) − (𝐻𝑧))) < 𝑟))))
196195imp 444 . . . . . . . . . . . . 13 (((((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)))) ∧ (𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋))) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣 ∈ (𝑋 ∖ {𝑧})) → (((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) → ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢) → (abs‘((((𝐺𝑣) − (𝐺𝑧)) / (𝑣𝑧)) − (𝐻𝑧))) < 𝑟)))
197 fveq2 6353 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑣 → (𝐺𝑦) = (𝐺𝑣))
198197oveq1d 6829 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑣 → ((𝐺𝑦) − (𝐺𝑧)) = ((𝐺𝑣) − (𝐺𝑧)))
199198, 102oveq12d 6832 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑣 → (((𝐺𝑦) − (𝐺𝑧)) / (𝑦𝑧)) = (((𝐺𝑣) − (𝐺𝑧)) / (𝑣𝑧)))
200 eqid 2760 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺𝑦) − (𝐺𝑧)) / (𝑦𝑧))) = (𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺𝑦) − (𝐺𝑧)) / (𝑦𝑧)))
201 ovex 6842 . . . . . . . . . . . . . . . . . . 19 (((𝐺𝑣) − (𝐺𝑧)) / (𝑣𝑧)) ∈ V
202199, 200, 201fvmpt 6445 . . . . . . . . . . . . . . . . . 18 (𝑣 ∈ (𝑋 ∖ {𝑧}) → ((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺𝑦) − (𝐺𝑧)) / (𝑦𝑧)))‘𝑣) = (((𝐺𝑣) − (𝐺𝑧)) / (𝑣𝑧)))
203202oveq1d 6829 . . . . . . . . . . . . . . . . 17 (𝑣 ∈ (𝑋 ∖ {𝑧}) → (((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺𝑦) − (𝐺𝑧)) / (𝑦𝑧)))‘𝑣) − (𝐻𝑧)) = ((((𝐺𝑣) − (𝐺𝑧)) / (𝑣𝑧)) − (𝐻𝑧)))
204203fveq2d 6357 . . . . . . . . . . . . . . . 16 (𝑣 ∈ (𝑋 ∖ {𝑧}) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺𝑦) − (𝐺𝑧)) / (𝑦𝑧)))‘𝑣) − (𝐻𝑧))) = (abs‘((((𝐺𝑣) − (𝐺𝑧)) / (𝑣𝑧)) − (𝐻𝑧))))
205204breq1d 4814 . . . . . . . . . . . . . . 15 (𝑣 ∈ (𝑋 ∖ {𝑧}) → ((abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺𝑦) − (𝐺𝑧)) / (𝑦𝑧)))‘𝑣) − (𝐻𝑧))) < 𝑟 ↔ (abs‘((((𝐺𝑣) − (𝐺𝑧)) / (𝑣𝑧)) − (𝐻𝑧))) < 𝑟))
206205imbi2d 329 . . . . . . . . . . . . . 14 (𝑣 ∈ (𝑋 ∖ {𝑧}) → (((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺𝑦) − (𝐺𝑧)) / (𝑦𝑧)))‘𝑣) − (𝐻𝑧))) < 𝑟) ↔ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢) → (abs‘((((𝐺𝑣) − (𝐺𝑧)) / (𝑣𝑧)) − (𝐻𝑧))) < 𝑟)))
207206adantl 473 . . . . . . . . . . . . 13 (((((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)))) ∧ (𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋))) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣 ∈ (𝑋 ∖ {𝑧})) → (((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺𝑦) − (𝐺𝑧)) / (𝑦𝑧)))‘𝑣) − (𝐻𝑧))) < 𝑟) ↔ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢) → (abs‘((((𝐺𝑣) − (𝐺𝑧)) / (𝑣𝑧)) − (𝐻𝑧))) < 𝑟)))
208196, 207sylibrd 249 . . . . . . . . . . . 12 (((((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)))) ∧ (𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋))) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣 ∈ (𝑋 ∖ {𝑧})) → (((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) → ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺𝑦) − (𝐺𝑧)) / (𝑦𝑧)))‘𝑣) − (𝐻𝑧))) < 𝑟)))
209208ralimdva 3100 . . . . . . . . . . 11 ((((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)))) ∧ (𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋))) ∧ 𝑤 ∈ ℝ+) → (∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) → ∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺𝑦) − (𝐺𝑧)) / (𝑦𝑧)))‘𝑣) − (𝐻𝑧))) < 𝑟)))
210209impr 650 . . . . . . . . . 10 ((((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)))) ∧ (𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋))) ∧ (𝑤 ∈ ℝ+ ∧ ∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)))) → ∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺𝑦) − (𝐺𝑧)) / (𝑦𝑧)))‘𝑣) − (𝐻𝑧))) < 𝑟))
211210an32s 881 . . . . . . . . 9 ((((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)))) ∧ (𝑤 ∈ ℝ+ ∧ ∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)))) ∧ (𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋))) → ∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺𝑦) − (𝐺𝑧)) / (𝑦𝑧)))‘𝑣) − (𝐻𝑧))) < 𝑟))
212 cnxmet 22797 . . . . . . . . . . . 12 (abs ∘ − ) ∈ (∞Met‘ℂ)
213 xmetres2 22387 . . . . . . . . . . . 12 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (∞Met‘𝑆))
214212, 140, 213sylancr 698 . . . . . . . . . . 11 ((𝜑𝑧𝑋) → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (∞Met‘𝑆))
215214ad3antrrr 768 . . . . . . . . . 10 (((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)))) ∧ (𝑤 ∈ ℝ+ ∧ ∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)))) → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (∞Met‘𝑆))
21619cnfldtop 22808 . . . . . . . . . . . . . . . . 17 (TopOpen‘ℂfld) ∈ Top
217 resttop 21186 . . . . . . . . . . . . . . . . 17 (((TopOpen‘ℂfld) ∈ Top ∧ 𝑆 ∈ {ℝ, ℂ}) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top)
218216, 3, 217sylancr 698 . . . . . . . . . . . . . . . 16 (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top)
21919cnfldtopon 22807 . . . . . . . . . . . . . . . . . . 19 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
220 resttopon 21187 . . . . . . . . . . . . . . . . . . 19 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
221219, 11, 220sylancr 698 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
222 toponuni 20941 . . . . . . . . . . . . . . . . . 18 (((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = ((TopOpen‘ℂfld) ↾t 𝑆))
223221, 222syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑆 = ((TopOpen‘ℂfld) ↾t 𝑆))
224134, 223sseqtrd 3782 . . . . . . . . . . . . . . . 16 (𝜑𝑋 ((TopOpen‘ℂfld) ↾t 𝑆))
225 eqid 2760 . . . . . . . . . . . . . . . . 17 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
226225ntrss2 21083 . . . . . . . . . . . . . . . 16 ((((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top ∧ 𝑋 ((TopOpen‘ℂfld) ↾t 𝑆)) → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ⊆ 𝑋)
227218, 224, 226syl2anc 696 . . . . . . . . . . . . . . 15 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ⊆ 𝑋)
228227, 26eqssd 3761 . . . . . . . . . . . . . 14 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) = 𝑋)
229225isopn3 21092 . . . . . . . . . . . . . . 15 ((((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top ∧ 𝑋 ((TopOpen‘ℂfld) ↾t 𝑆)) → (𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆) ↔ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) = 𝑋))
230218, 224, 229syl2anc 696 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆) ↔ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) = 𝑋))
231228, 230mpbird 247 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
232 eqid 2760 . . . . . . . . . . . . . . 15 ((abs ∘ − ) ↾ (𝑆 × 𝑆)) = ((abs ∘ − ) ↾ (𝑆 × 𝑆))
23319cnfldtopn 22806 . . . . . . . . . . . . . . 15 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
234 eqid 2760 . . . . . . . . . . . . . . 15 (MetOpen‘((abs ∘ − ) ↾ (𝑆 × 𝑆))) = (MetOpen‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))
235232, 233, 234metrest 22550 . . . . . . . . . . . . . 14 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑆) = (MetOpen‘((abs ∘ − ) ↾ (𝑆 × 𝑆))))
236212, 11, 235sylancr 698 . . . . . . . . . . . . 13 (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑆) = (MetOpen‘((abs ∘ − ) ↾ (𝑆 × 𝑆))))
237231, 236eleqtrd 2841 . . . . . . . . . . . 12 (𝜑𝑋 ∈ (MetOpen‘((abs ∘ − ) ↾ (𝑆 × 𝑆))))
238237adantr 472 . . . . . . . . . . 11 ((𝜑𝑧𝑋) → 𝑋 ∈ (MetOpen‘((abs ∘ − ) ↾ (𝑆 × 𝑆))))
239238ad3antrrr 768 . . . . . . . . . 10 (((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)))) ∧ (𝑤 ∈ ℝ+ ∧ ∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)))) → 𝑋 ∈ (MetOpen‘((abs ∘ − ) ↾ (𝑆 × 𝑆))))
24086ad2antrr 764 . . . . . . . . . 10 (((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)))) ∧ (𝑤 ∈ ℝ+ ∧ ∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)))) → 𝑧𝑋)
241 simprl 811 . . . . . . . . . 10 (((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)))) ∧ (𝑤 ∈ ℝ+ ∧ ∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)))) → 𝑤 ∈ ℝ+)
242234mopni3 22520 . . . . . . . . . 10 (((((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (∞Met‘𝑆) ∧ 𝑋 ∈ (MetOpen‘((abs ∘ − ) ↾ (𝑆 × 𝑆))) ∧ 𝑧𝑋) ∧ 𝑤 ∈ ℝ+) → ∃𝑢 ∈ ℝ+ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋))
243215, 239, 240, 241, 242syl31anc 1480 . . . . . . . . 9 (((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)))) ∧ (𝑤 ∈ ℝ+ ∧ ∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)))) → ∃𝑢 ∈ ℝ+ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋))
244211, 243reximddv 3156 . . . . . . . 8 (((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)))) ∧ (𝑤 ∈ ℝ+ ∧ ∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)))) → ∃𝑢 ∈ ℝ+𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺𝑦) − (𝐺𝑧)) / (𝑦𝑧)))‘𝑣) − (𝐻𝑧))) < 𝑟))
245152, 244rexlimddv 3173 . . . . . . 7 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)))) → ∃𝑢 ∈ ℝ+𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺𝑦) − (𝐺𝑧)) / (𝑦𝑧)))‘𝑣) − (𝐻𝑧))) < 𝑟))
246245rexlimdvaa 3170 . . . . . 6 (((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) → (∃𝑛𝑍 (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) → ∃𝑢 ∈ ℝ+𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺𝑦) − (𝐺𝑧)) / (𝑦𝑧)))‘𝑣) − (𝐻𝑧))) < 𝑟)))
24799, 246syl5 34 . . . . 5 (((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) → ((∃𝑗𝑍𝑛 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) → ∃𝑢 ∈ ℝ+𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺𝑦) − (𝐺𝑧)) / (𝑦𝑧)))‘𝑣) − (𝐻𝑧))) < 𝑟)))
24878, 96, 247mp2and 717 . . . 4 (((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) → ∃𝑢 ∈ ℝ+𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺𝑦) − (𝐺𝑧)) / (𝑦𝑧)))‘𝑣) − (𝐻𝑧))) < 𝑟))
249248ralrimiva 3104 . . 3 ((𝜑𝑧𝑋) → ∀𝑟 ∈ ℝ+𝑢 ∈ ℝ+𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺𝑦) − (𝐺𝑧)) / (𝑦𝑧)))‘𝑣) − (𝐻𝑧))) < 𝑟))
2506adantr 472 . . . . . 6 ((𝜑𝑧𝑋) → 𝐺:𝑋⟶ℂ)
251 simpr 479 . . . . . 6 ((𝜑𝑧𝑋) → 𝑧𝑋)
252250, 141, 251dvlem 23879 . . . . 5 (((𝜑𝑧𝑋) ∧ 𝑦 ∈ (𝑋 ∖ {𝑧})) → (((𝐺𝑦) − (𝐺𝑧)) / (𝑦𝑧)) ∈ ℂ)
253252, 200fmptd 6549 . . . 4 ((𝜑𝑧𝑋) → (𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺𝑦) − (𝐺𝑧)) / (𝑦𝑧))):(𝑋 ∖ {𝑧})⟶ℂ)
254141ssdifssd 3891 . . . 4 ((𝜑𝑧𝑋) → (𝑋 ∖ {𝑧}) ⊆ ℂ)
255141, 251sseldd 3745 . . . 4 ((𝜑𝑧𝑋) → 𝑧 ∈ ℂ)
256253, 254, 255ellimc3 23862 . . 3 ((𝜑𝑧𝑋) → ((𝐻𝑧) ∈ ((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺𝑦) − (𝐺𝑧)) / (𝑦𝑧))) lim 𝑧) ↔ ((𝐻𝑧) ∈ ℂ ∧ ∀𝑟 ∈ ℝ+𝑢 ∈ ℝ+𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺𝑦) − (𝐺𝑧)) / (𝑦𝑧)))‘𝑣) − (𝐻𝑧))) < 𝑟))))
25730, 249, 256mpbir2and 995 . 2 ((𝜑𝑧𝑋) → (𝐻𝑧) ∈ ((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺𝑦) − (𝐺𝑧)) / (𝑦𝑧))) lim 𝑧))
25818, 19, 200, 140, 250, 139eldv 23881 . 2 ((𝜑𝑧𝑋) → (𝑧(𝑆 D 𝐺)(𝐻𝑧) ↔ (𝑧 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ∧ (𝐻𝑧) ∈ ((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺𝑦) − (𝐺𝑧)) / (𝑦𝑧))) lim 𝑧))))
25927, 257, 258mpbir2and 995 1 ((𝜑𝑧𝑋) → 𝑧(𝑆 D 𝐺)(𝐻𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932  wral 3050  wrex 3051  Vcvv 3340  cdif 3712  wss 3715  {csn 4321  {cpr 4323   cuni 4588   class class class wbr 4804  cmpt 4881   × cxp 5264  dom cdm 5266  cres 5268  ccom 5270  Rel wrel 5271  Fun wfun 6043   Fn wfn 6044  wf 6045  cfv 6049  (class class class)co 6814  𝑚 cmap 8025  cc 10146  cr 10147   < clt 10286  cmin 10478   / cdiv 10896  2c2 11282  cz 11589  cuz 11899  +crp 12045  abscabs 14193  cli 14434  t crest 16303  TopOpenctopn 16304  ∞Metcxmt 19953  ballcbl 19955  MetOpencmopn 19958  fldccnfld 19968  Topctop 20920  TopOnctopon 20937  intcnt 21043   lim climc 23845   D cdv 23846  𝑢culm 24349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226  ax-addf 10227  ax-mulf 10228
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-of 7063  df-om 7232  df-1st 7334  df-2nd 7335  df-supp 7465  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-oadd 7734  df-er 7913  df-map 8027  df-pm 8028  df-ixp 8077  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-fsupp 8443  df-fi 8484  df-sup 8515  df-inf 8516  df-oi 8582  df-card 8975  df-cda 9202  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-q 12002  df-rp 12046  df-xneg 12159  df-xadd 12160  df-xmul 12161  df-ioo 12392  df-ico 12394  df-icc 12395  df-fz 12540  df-fzo 12680  df-fl 12807  df-seq 13016  df-exp 13075  df-hash 13332  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-limsup 14421  df-clim 14438  df-rlim 14439  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-starv 16178  df-sca 16179  df-vsca 16180  df-ip 16181  df-tset 16182  df-ple 16183  df-ds 16186  df-unif 16187  df-hom 16188  df-cco 16189  df-rest 16305  df-topn 16306  df-0g 16324  df-gsum 16325  df-topgen 16326  df-pt 16327  df-prds 16330  df-xrs 16384  df-qtop 16389  df-imas 16390  df-xps 16392  df-mre 16468  df-mrc 16469  df-acs 16471  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-submnd 17557  df-mulg 17762  df-cntz 17970  df-cmn 18415  df-psmet 19960  df-xmet 19961  df-met 19962  df-bl 19963  df-mopn 19964  df-fbas 19965  df-fg 19966  df-cnfld 19969  df-top 20921  df-topon 20938  df-topsp 20959  df-bases 20972  df-cld 21045  df-ntr 21046  df-cls 21047  df-nei 21124  df-lp 21162  df-perf 21163  df-cn 21253  df-cnp 21254  df-haus 21341  df-cmp 21412  df-tx 21587  df-hmeo 21780  df-fil 21871  df-fm 21963  df-flim 21964  df-flf 21965  df-xms 22346  df-ms 22347  df-tms 22348  df-cncf 22902  df-limc 23849  df-dv 23850  df-ulm 24350
This theorem is referenced by:  ulmdv  24376
  Copyright terms: Public domain W3C validator