MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmf Structured version   Visualization version   GIF version

Theorem ulmf 24040
Description: Closure of a uniform limit of functions. (Contributed by Mario Carneiro, 26-Feb-2015.)
Assertion
Ref Expression
ulmf (𝐹(⇝𝑢𝑆)𝐺 → ∃𝑛 ∈ ℤ 𝐹:(ℤ𝑛)⟶(ℂ ↑𝑚 𝑆))
Distinct variable groups:   𝑛,𝐹   𝑛,𝐺   𝑆,𝑛

Proof of Theorem ulmf
Dummy variables 𝑗 𝑘 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ulmscl 24037 . . . 4 (𝐹(⇝𝑢𝑆)𝐺𝑆 ∈ V)
2 ulmval 24038 . . . 4 (𝑆 ∈ V → (𝐹(⇝𝑢𝑆)𝐺 ↔ ∃𝑛 ∈ ℤ (𝐹:(ℤ𝑛)⟶(ℂ ↑𝑚 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)))
31, 2syl 17 . . 3 (𝐹(⇝𝑢𝑆)𝐺 → (𝐹(⇝𝑢𝑆)𝐺 ↔ ∃𝑛 ∈ ℤ (𝐹:(ℤ𝑛)⟶(ℂ ↑𝑚 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)))
43ibi 256 . 2 (𝐹(⇝𝑢𝑆)𝐺 → ∃𝑛 ∈ ℤ (𝐹:(ℤ𝑛)⟶(ℂ ↑𝑚 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥))
5 simp1 1059 . . 3 ((𝐹:(ℤ𝑛)⟶(ℂ ↑𝑚 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥) → 𝐹:(ℤ𝑛)⟶(ℂ ↑𝑚 𝑆))
65reximi 3005 . 2 (∃𝑛 ∈ ℤ (𝐹:(ℤ𝑛)⟶(ℂ ↑𝑚 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥) → ∃𝑛 ∈ ℤ 𝐹:(ℤ𝑛)⟶(ℂ ↑𝑚 𝑆))
74, 6syl 17 1 (𝐹(⇝𝑢𝑆)𝐺 → ∃𝑛 ∈ ℤ 𝐹:(ℤ𝑛)⟶(ℂ ↑𝑚 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  w3a 1036  wcel 1987  wral 2907  wrex 2908  Vcvv 3186   class class class wbr 4613  wf 5843  cfv 5847  (class class class)co 6604  𝑚 cmap 7802  cc 9878   < clt 10018  cmin 10210  cz 11321  cuz 11631  +crp 11776  abscabs 13908  𝑢culm 24034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-map 7804  df-pm 7805  df-neg 10213  df-z 11322  df-uz 11632  df-ulm 24035
This theorem is referenced by:  ulmpm  24041  ulmuni  24050  ulmss  24055
  Copyright terms: Public domain W3C validator