![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ulmscl | Structured version Visualization version GIF version |
Description: Closure of the base set in a uniform limit. (Contributed by Mario Carneiro, 26-Feb-2015.) |
Ref | Expression |
---|---|
ulmscl | ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝑆 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 4686 | . 2 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (⇝𝑢‘𝑆)) | |
2 | elfvex 6259 | . 2 ⊢ (〈𝐹, 𝐺〉 ∈ (⇝𝑢‘𝑆) → 𝑆 ∈ V) | |
3 | 1, 2 | sylbi 207 | 1 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝑆 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2030 Vcvv 3231 〈cop 4216 class class class wbr 4685 ‘cfv 5926 ⇝𝑢culm 24175 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-nul 4822 ax-pow 4873 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-dm 5153 df-iota 5889 df-fv 5934 |
This theorem is referenced by: ulmcl 24180 ulmf 24181 ulmi 24185 ulmclm 24186 ulmres 24187 ulmshftlem 24188 ulmss 24196 ulmdvlem1 24199 ulmdvlem3 24201 iblulm 24206 itgulm2 24208 |
Copyright terms: Public domain | W3C validator |