![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ulmuni | Structured version Visualization version GIF version |
Description: An sequence of functions uniformly converges to at most one limit. (Contributed by Mario Carneiro, 5-Jul-2017.) |
Ref | Expression |
---|---|
ulmuni | ⊢ ((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) → 𝐺 = 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ulmcl 24180 | . . . 4 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝐺:𝑆⟶ℂ) | |
2 | 1 | adantr 480 | . . 3 ⊢ ((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) → 𝐺:𝑆⟶ℂ) |
3 | ffn 6083 | . . 3 ⊢ (𝐺:𝑆⟶ℂ → 𝐺 Fn 𝑆) | |
4 | 2, 3 | syl 17 | . 2 ⊢ ((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) → 𝐺 Fn 𝑆) |
5 | ulmcl 24180 | . . . 4 ⊢ (𝐹(⇝𝑢‘𝑆)𝐻 → 𝐻:𝑆⟶ℂ) | |
6 | 5 | adantl 481 | . . 3 ⊢ ((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) → 𝐻:𝑆⟶ℂ) |
7 | ffn 6083 | . . 3 ⊢ (𝐻:𝑆⟶ℂ → 𝐻 Fn 𝑆) | |
8 | 6, 7 | syl 17 | . 2 ⊢ ((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) → 𝐻 Fn 𝑆) |
9 | eqid 2651 | . . . . 5 ⊢ (ℤ≥‘𝑛) = (ℤ≥‘𝑛) | |
10 | simplr 807 | . . . . 5 ⊢ (((((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑𝑚 𝑆)) → 𝑛 ∈ ℤ) | |
11 | simpr 476 | . . . . 5 ⊢ (((((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑𝑚 𝑆)) → 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑𝑚 𝑆)) | |
12 | simpllr 815 | . . . . 5 ⊢ (((((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑𝑚 𝑆)) → 𝑥 ∈ 𝑆) | |
13 | fvex 6239 | . . . . . . 7 ⊢ (ℤ≥‘𝑛) ∈ V | |
14 | 13 | mptex 6527 | . . . . . 6 ⊢ (𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥)) ∈ V |
15 | 14 | a1i 11 | . . . . 5 ⊢ (((((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑𝑚 𝑆)) → (𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥)) ∈ V) |
16 | fveq2 6229 | . . . . . . . . 9 ⊢ (𝑖 = 𝑘 → (𝐹‘𝑖) = (𝐹‘𝑘)) | |
17 | 16 | fveq1d 6231 | . . . . . . . 8 ⊢ (𝑖 = 𝑘 → ((𝐹‘𝑖)‘𝑥) = ((𝐹‘𝑘)‘𝑥)) |
18 | eqid 2651 | . . . . . . . 8 ⊢ (𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥)) = (𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥)) | |
19 | fvex 6239 | . . . . . . . 8 ⊢ ((𝐹‘𝑘)‘𝑥) ∈ V | |
20 | 17, 18, 19 | fvmpt 6321 | . . . . . . 7 ⊢ (𝑘 ∈ (ℤ≥‘𝑛) → ((𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥))‘𝑘) = ((𝐹‘𝑘)‘𝑥)) |
21 | 20 | eqcomd 2657 | . . . . . 6 ⊢ (𝑘 ∈ (ℤ≥‘𝑛) → ((𝐹‘𝑘)‘𝑥) = ((𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥))‘𝑘)) |
22 | 21 | adantl 481 | . . . . 5 ⊢ ((((((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑𝑚 𝑆)) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐹‘𝑘)‘𝑥) = ((𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥))‘𝑘)) |
23 | simp-4l 823 | . . . . 5 ⊢ (((((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑𝑚 𝑆)) → 𝐹(⇝𝑢‘𝑆)𝐺) | |
24 | 9, 10, 11, 12, 15, 22, 23 | ulmclm 24186 | . . . 4 ⊢ (((((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑𝑚 𝑆)) → (𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥)) ⇝ (𝐺‘𝑥)) |
25 | simp-4r 824 | . . . . 5 ⊢ (((((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑𝑚 𝑆)) → 𝐹(⇝𝑢‘𝑆)𝐻) | |
26 | 9, 10, 11, 12, 15, 22, 25 | ulmclm 24186 | . . . 4 ⊢ (((((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑𝑚 𝑆)) → (𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥)) ⇝ (𝐻‘𝑥)) |
27 | climuni 14327 | . . . 4 ⊢ (((𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥)) ⇝ (𝐺‘𝑥) ∧ (𝑖 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑖)‘𝑥)) ⇝ (𝐻‘𝑥)) → (𝐺‘𝑥) = (𝐻‘𝑥)) | |
28 | 24, 26, 27 | syl2anc 694 | . . 3 ⊢ (((((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑𝑚 𝑆)) → (𝐺‘𝑥) = (𝐻‘𝑥)) |
29 | ulmf 24181 | . . . 4 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → ∃𝑛 ∈ ℤ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑𝑚 𝑆)) | |
30 | 29 | ad2antrr 762 | . . 3 ⊢ (((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) → ∃𝑛 ∈ ℤ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑𝑚 𝑆)) |
31 | 28, 30 | r19.29a 3107 | . 2 ⊢ (((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) ∧ 𝑥 ∈ 𝑆) → (𝐺‘𝑥) = (𝐻‘𝑥)) |
32 | 4, 8, 31 | eqfnfvd 6354 | 1 ⊢ ((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) → 𝐺 = 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∃wrex 2942 Vcvv 3231 class class class wbr 4685 ↦ cmpt 4762 Fn wfn 5921 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 ↑𝑚 cmap 7899 ℂcc 9972 ℤcz 11415 ℤ≥cuz 11725 ⇝ cli 14259 ⇝𝑢culm 24175 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-map 7901 df-pm 7902 df-en 7998 df-dom 7999 df-sdom 8000 df-sup 8389 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-n0 11331 df-z 11416 df-uz 11726 df-rp 11871 df-seq 12842 df-exp 12901 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-clim 14263 df-ulm 24176 |
This theorem is referenced by: ulmdm 24192 |
Copyright terms: Public domain | W3C validator |