MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmuni Structured version   Visualization version   GIF version

Theorem ulmuni 24982
Description: A sequence of functions uniformly converges to at most one limit. (Contributed by Mario Carneiro, 5-Jul-2017.)
Assertion
Ref Expression
ulmuni ((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) → 𝐺 = 𝐻)

Proof of Theorem ulmuni
Dummy variables 𝑖 𝑘 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ulmcl 24971 . . . 4 (𝐹(⇝𝑢𝑆)𝐺𝐺:𝑆⟶ℂ)
21adantr 483 . . 3 ((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) → 𝐺:𝑆⟶ℂ)
32ffnd 6517 . 2 ((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) → 𝐺 Fn 𝑆)
4 ulmcl 24971 . . . 4 (𝐹(⇝𝑢𝑆)𝐻𝐻:𝑆⟶ℂ)
54adantl 484 . . 3 ((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) → 𝐻:𝑆⟶ℂ)
65ffnd 6517 . 2 ((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) → 𝐻 Fn 𝑆)
7 eqid 2823 . . . . 5 (ℤ𝑛) = (ℤ𝑛)
8 simplr 767 . . . . 5 (((((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) ∧ 𝑥𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → 𝑛 ∈ ℤ)
9 simpr 487 . . . . 5 (((((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) ∧ 𝑥𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆))
10 simpllr 774 . . . . 5 (((((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) ∧ 𝑥𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → 𝑥𝑆)
11 fvex 6685 . . . . . . 7 (ℤ𝑛) ∈ V
1211mptex 6988 . . . . . 6 (𝑖 ∈ (ℤ𝑛) ↦ ((𝐹𝑖)‘𝑥)) ∈ V
1312a1i 11 . . . . 5 (((((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) ∧ 𝑥𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → (𝑖 ∈ (ℤ𝑛) ↦ ((𝐹𝑖)‘𝑥)) ∈ V)
14 fveq2 6672 . . . . . . . . 9 (𝑖 = 𝑘 → (𝐹𝑖) = (𝐹𝑘))
1514fveq1d 6674 . . . . . . . 8 (𝑖 = 𝑘 → ((𝐹𝑖)‘𝑥) = ((𝐹𝑘)‘𝑥))
16 eqid 2823 . . . . . . . 8 (𝑖 ∈ (ℤ𝑛) ↦ ((𝐹𝑖)‘𝑥)) = (𝑖 ∈ (ℤ𝑛) ↦ ((𝐹𝑖)‘𝑥))
17 fvex 6685 . . . . . . . 8 ((𝐹𝑘)‘𝑥) ∈ V
1815, 16, 17fvmpt 6770 . . . . . . 7 (𝑘 ∈ (ℤ𝑛) → ((𝑖 ∈ (ℤ𝑛) ↦ ((𝐹𝑖)‘𝑥))‘𝑘) = ((𝐹𝑘)‘𝑥))
1918eqcomd 2829 . . . . . 6 (𝑘 ∈ (ℤ𝑛) → ((𝐹𝑘)‘𝑥) = ((𝑖 ∈ (ℤ𝑛) ↦ ((𝐹𝑖)‘𝑥))‘𝑘))
2019adantl 484 . . . . 5 ((((((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) ∧ 𝑥𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑘)‘𝑥) = ((𝑖 ∈ (ℤ𝑛) ↦ ((𝐹𝑖)‘𝑥))‘𝑘))
21 simp-4l 781 . . . . 5 (((((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) ∧ 𝑥𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → 𝐹(⇝𝑢𝑆)𝐺)
227, 8, 9, 10, 13, 20, 21ulmclm 24977 . . . 4 (((((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) ∧ 𝑥𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → (𝑖 ∈ (ℤ𝑛) ↦ ((𝐹𝑖)‘𝑥)) ⇝ (𝐺𝑥))
23 simp-4r 782 . . . . 5 (((((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) ∧ 𝑥𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → 𝐹(⇝𝑢𝑆)𝐻)
247, 8, 9, 10, 13, 20, 23ulmclm 24977 . . . 4 (((((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) ∧ 𝑥𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → (𝑖 ∈ (ℤ𝑛) ↦ ((𝐹𝑖)‘𝑥)) ⇝ (𝐻𝑥))
25 climuni 14911 . . . 4 (((𝑖 ∈ (ℤ𝑛) ↦ ((𝐹𝑖)‘𝑥)) ⇝ (𝐺𝑥) ∧ (𝑖 ∈ (ℤ𝑛) ↦ ((𝐹𝑖)‘𝑥)) ⇝ (𝐻𝑥)) → (𝐺𝑥) = (𝐻𝑥))
2622, 24, 25syl2anc 586 . . 3 (((((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) ∧ 𝑥𝑆) ∧ 𝑛 ∈ ℤ) ∧ 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → (𝐺𝑥) = (𝐻𝑥))
27 ulmf 24972 . . . 4 (𝐹(⇝𝑢𝑆)𝐺 → ∃𝑛 ∈ ℤ 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆))
2827ad2antrr 724 . . 3 (((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) ∧ 𝑥𝑆) → ∃𝑛 ∈ ℤ 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆))
2926, 28r19.29a 3291 . 2 (((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) ∧ 𝑥𝑆) → (𝐺𝑥) = (𝐻𝑥))
303, 6, 29eqfnfvd 6807 1 ((𝐹(⇝𝑢𝑆)𝐺𝐹(⇝𝑢𝑆)𝐻) → 𝐺 = 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wrex 3141  Vcvv 3496   class class class wbr 5068  cmpt 5148  wf 6353  cfv 6357  (class class class)co 7158  m cmap 8408  cc 10537  cz 11984  cuz 12246  cli 14843  𝑢culm 24966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-ulm 24967
This theorem is referenced by:  ulmdm  24983
  Copyright terms: Public domain W3C validator