MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmval Structured version   Visualization version   GIF version

Theorem ulmval 24960
Description: Express the predicate: The sequence of functions 𝐹 converges uniformly to 𝐺 on 𝑆. (Contributed by Mario Carneiro, 26-Feb-2015.)
Assertion
Ref Expression
ulmval (𝑆𝑉 → (𝐹(⇝𝑢𝑆)𝐺 ↔ ∃𝑛 ∈ ℤ (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)))
Distinct variable groups:   𝑗,𝑘,𝑛,𝑥,𝑧,𝐹   𝑗,𝐺,𝑘,𝑛,𝑥,𝑧   𝑆,𝑗,𝑘,𝑛,𝑥,𝑧   𝑛,𝑉
Allowed substitution hints:   𝑉(𝑥,𝑧,𝑗,𝑘)

Proof of Theorem ulmval
Dummy variables 𝑓 𝑦 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ulmrel 24958 . . . 4 Rel (⇝𝑢𝑆)
21brrelex12i 5600 . . 3 (𝐹(⇝𝑢𝑆)𝐺 → (𝐹 ∈ V ∧ 𝐺 ∈ V))
32a1i 11 . 2 (𝑆𝑉 → (𝐹(⇝𝑢𝑆)𝐺 → (𝐹 ∈ V ∧ 𝐺 ∈ V)))
4 3simpa 1143 . . . 4 ((𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥) → (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ))
5 fvex 6676 . . . . . . 7 (ℤ𝑛) ∈ V
6 fex 6981 . . . . . . 7 ((𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ (ℤ𝑛) ∈ V) → 𝐹 ∈ V)
75, 6mpan2 689 . . . . . 6 (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) → 𝐹 ∈ V)
87a1i 11 . . . . 5 (𝑆𝑉 → (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) → 𝐹 ∈ V))
9 fex 6981 . . . . . 6 ((𝐺:𝑆⟶ℂ ∧ 𝑆𝑉) → 𝐺 ∈ V)
109expcom 416 . . . . 5 (𝑆𝑉 → (𝐺:𝑆⟶ℂ → 𝐺 ∈ V))
118, 10anim12d 610 . . . 4 (𝑆𝑉 → ((𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ) → (𝐹 ∈ V ∧ 𝐺 ∈ V)))
124, 11syl5 34 . . 3 (𝑆𝑉 → ((𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥) → (𝐹 ∈ V ∧ 𝐺 ∈ V)))
1312rexlimdvw 3288 . 2 (𝑆𝑉 → (∃𝑛 ∈ ℤ (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥) → (𝐹 ∈ V ∧ 𝐺 ∈ V)))
14 df-ulm 24957 . . . . . 6 𝑢 = (𝑠 ∈ V ↦ {⟨𝑓, 𝑦⟩ ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑠) ∧ 𝑦:𝑠⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑠 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥)})
15 oveq2 7156 . . . . . . . . . 10 (𝑠 = 𝑆 → (ℂ ↑m 𝑠) = (ℂ ↑m 𝑆))
1615feq3d 6494 . . . . . . . . 9 (𝑠 = 𝑆 → (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑠) ↔ 𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆)))
17 feq2 6489 . . . . . . . . 9 (𝑠 = 𝑆 → (𝑦:𝑠⟶ℂ ↔ 𝑦:𝑆⟶ℂ))
18 raleq 3404 . . . . . . . . . . 11 (𝑠 = 𝑆 → (∀𝑧𝑠 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥 ↔ ∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥))
1918rexralbidv 3299 . . . . . . . . . 10 (𝑠 = 𝑆 → (∃𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑠 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥 ↔ ∃𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥))
2019ralbidv 3195 . . . . . . . . 9 (𝑠 = 𝑆 → (∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑠 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥))
2116, 17, 203anbi123d 1430 . . . . . . . 8 (𝑠 = 𝑆 → ((𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑠) ∧ 𝑦:𝑠⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑠 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥) ↔ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥)))
2221rexbidv 3295 . . . . . . 7 (𝑠 = 𝑆 → (∃𝑛 ∈ ℤ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑠) ∧ 𝑦:𝑠⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑠 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥) ↔ ∃𝑛 ∈ ℤ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥)))
2322opabbidv 5123 . . . . . 6 (𝑠 = 𝑆 → {⟨𝑓, 𝑦⟩ ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑠) ∧ 𝑦:𝑠⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑠 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥)} = {⟨𝑓, 𝑦⟩ ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥)})
24 elex 3511 . . . . . 6 (𝑆𝑉𝑆 ∈ V)
25 simpr1 1189 . . . . . . . . . . . . 13 ((𝑆𝑉 ∧ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥)) → 𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆))
26 uzssz 12256 . . . . . . . . . . . . 13 (ℤ𝑛) ⊆ ℤ
27 ovex 7181 . . . . . . . . . . . . . 14 (ℂ ↑m 𝑆) ∈ V
28 zex 11982 . . . . . . . . . . . . . 14 ℤ ∈ V
29 elpm2r 8416 . . . . . . . . . . . . . 14 ((((ℂ ↑m 𝑆) ∈ V ∧ ℤ ∈ V) ∧ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ (ℤ𝑛) ⊆ ℤ)) → 𝑓 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ))
3027, 28, 29mpanl12 700 . . . . . . . . . . . . 13 ((𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ (ℤ𝑛) ⊆ ℤ) → 𝑓 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ))
3125, 26, 30sylancl 588 . . . . . . . . . . . 12 ((𝑆𝑉 ∧ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥)) → 𝑓 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ))
32 simpr2 1190 . . . . . . . . . . . . 13 ((𝑆𝑉 ∧ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥)) → 𝑦:𝑆⟶ℂ)
33 cnex 10610 . . . . . . . . . . . . . 14 ℂ ∈ V
34 simpl 485 . . . . . . . . . . . . . 14 ((𝑆𝑉 ∧ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥)) → 𝑆𝑉)
35 elmapg 8411 . . . . . . . . . . . . . 14 ((ℂ ∈ V ∧ 𝑆𝑉) → (𝑦 ∈ (ℂ ↑m 𝑆) ↔ 𝑦:𝑆⟶ℂ))
3633, 34, 35sylancr 589 . . . . . . . . . . . . 13 ((𝑆𝑉 ∧ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥)) → (𝑦 ∈ (ℂ ↑m 𝑆) ↔ 𝑦:𝑆⟶ℂ))
3732, 36mpbird 259 . . . . . . . . . . . 12 ((𝑆𝑉 ∧ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥)) → 𝑦 ∈ (ℂ ↑m 𝑆))
3831, 37jca 514 . . . . . . . . . . 11 ((𝑆𝑉 ∧ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥)) → (𝑓 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ) ∧ 𝑦 ∈ (ℂ ↑m 𝑆)))
3938ex 415 . . . . . . . . . 10 (𝑆𝑉 → ((𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥) → (𝑓 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ) ∧ 𝑦 ∈ (ℂ ↑m 𝑆))))
4039rexlimdvw 3288 . . . . . . . . 9 (𝑆𝑉 → (∃𝑛 ∈ ℤ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥) → (𝑓 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ) ∧ 𝑦 ∈ (ℂ ↑m 𝑆))))
4140ssopab2dv 5429 . . . . . . . 8 (𝑆𝑉 → {⟨𝑓, 𝑦⟩ ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥)} ⊆ {⟨𝑓, 𝑦⟩ ∣ (𝑓 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ) ∧ 𝑦 ∈ (ℂ ↑m 𝑆))})
42 df-xp 5554 . . . . . . . 8 (((ℂ ↑m 𝑆) ↑pm ℤ) × (ℂ ↑m 𝑆)) = {⟨𝑓, 𝑦⟩ ∣ (𝑓 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ) ∧ 𝑦 ∈ (ℂ ↑m 𝑆))}
4341, 42sseqtrrdi 4016 . . . . . . 7 (𝑆𝑉 → {⟨𝑓, 𝑦⟩ ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥)} ⊆ (((ℂ ↑m 𝑆) ↑pm ℤ) × (ℂ ↑m 𝑆)))
44 ovex 7181 . . . . . . . . 9 ((ℂ ↑m 𝑆) ↑pm ℤ) ∈ V
4544, 27xpex 7468 . . . . . . . 8 (((ℂ ↑m 𝑆) ↑pm ℤ) × (ℂ ↑m 𝑆)) ∈ V
4645ssex 5216 . . . . . . 7 ({⟨𝑓, 𝑦⟩ ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥)} ⊆ (((ℂ ↑m 𝑆) ↑pm ℤ) × (ℂ ↑m 𝑆)) → {⟨𝑓, 𝑦⟩ ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥)} ∈ V)
4743, 46syl 17 . . . . . 6 (𝑆𝑉 → {⟨𝑓, 𝑦⟩ ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥)} ∈ V)
4814, 23, 24, 47fvmptd3 6784 . . . . 5 (𝑆𝑉 → (⇝𝑢𝑆) = {⟨𝑓, 𝑦⟩ ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥)})
4948breqd 5068 . . . 4 (𝑆𝑉 → (𝐹(⇝𝑢𝑆)𝐺𝐹{⟨𝑓, 𝑦⟩ ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥)}𝐺))
50 simpl 485 . . . . . . . 8 ((𝑓 = 𝐹𝑦 = 𝐺) → 𝑓 = 𝐹)
5150feq1d 6492 . . . . . . 7 ((𝑓 = 𝐹𝑦 = 𝐺) → (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ↔ 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)))
52 simpr 487 . . . . . . . 8 ((𝑓 = 𝐹𝑦 = 𝐺) → 𝑦 = 𝐺)
5352feq1d 6492 . . . . . . 7 ((𝑓 = 𝐹𝑦 = 𝐺) → (𝑦:𝑆⟶ℂ ↔ 𝐺:𝑆⟶ℂ))
5450fveq1d 6665 . . . . . . . . . . . . . 14 ((𝑓 = 𝐹𝑦 = 𝐺) → (𝑓𝑘) = (𝐹𝑘))
5554fveq1d 6665 . . . . . . . . . . . . 13 ((𝑓 = 𝐹𝑦 = 𝐺) → ((𝑓𝑘)‘𝑧) = ((𝐹𝑘)‘𝑧))
5652fveq1d 6665 . . . . . . . . . . . . 13 ((𝑓 = 𝐹𝑦 = 𝐺) → (𝑦𝑧) = (𝐺𝑧))
5755, 56oveq12d 7166 . . . . . . . . . . . 12 ((𝑓 = 𝐹𝑦 = 𝐺) → (((𝑓𝑘)‘𝑧) − (𝑦𝑧)) = (((𝐹𝑘)‘𝑧) − (𝐺𝑧)))
5857fveq2d 6667 . . . . . . . . . . 11 ((𝑓 = 𝐹𝑦 = 𝐺) → (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) = (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))))
5958breq1d 5067 . . . . . . . . . 10 ((𝑓 = 𝐹𝑦 = 𝐺) → ((abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥 ↔ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥))
6059ralbidv 3195 . . . . . . . . 9 ((𝑓 = 𝐹𝑦 = 𝐺) → (∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥 ↔ ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥))
6160rexralbidv 3299 . . . . . . . 8 ((𝑓 = 𝐹𝑦 = 𝐺) → (∃𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥 ↔ ∃𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥))
6261ralbidv 3195 . . . . . . 7 ((𝑓 = 𝐹𝑦 = 𝐺) → (∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥))
6351, 53, 623anbi123d 1430 . . . . . 6 ((𝑓 = 𝐹𝑦 = 𝐺) → ((𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥) ↔ (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)))
6463rexbidv 3295 . . . . 5 ((𝑓 = 𝐹𝑦 = 𝐺) → (∃𝑛 ∈ ℤ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥) ↔ ∃𝑛 ∈ ℤ (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)))
65 eqid 2819 . . . . 5 {⟨𝑓, 𝑦⟩ ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥)} = {⟨𝑓, 𝑦⟩ ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥)}
6664, 65brabga 5412 . . . 4 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹{⟨𝑓, 𝑦⟩ ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝑦:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥)}𝐺 ↔ ∃𝑛 ∈ ℤ (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)))
6749, 66sylan9bb 512 . . 3 ((𝑆𝑉 ∧ (𝐹 ∈ V ∧ 𝐺 ∈ V)) → (𝐹(⇝𝑢𝑆)𝐺 ↔ ∃𝑛 ∈ ℤ (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)))
6867ex 415 . 2 (𝑆𝑉 → ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹(⇝𝑢𝑆)𝐺 ↔ ∃𝑛 ∈ ℤ (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥))))
693, 13, 68pm5.21ndd 383 1 (𝑆𝑉 → (𝐹(⇝𝑢𝑆)𝐺 ↔ ∃𝑛 ∈ ℤ (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1082   = wceq 1531  wcel 2108  wral 3136  wrex 3137  Vcvv 3493  wss 3934   class class class wbr 5057  {copab 5119   × cxp 5546  wf 6344  cfv 6348  (class class class)co 7148  m cmap 8398  pm cpm 8399  cc 10527   < clt 10667  cmin 10862  cz 11973  cuz 12235  +crp 12381  abscabs 14585  𝑢culm 24956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7151  df-oprab 7152  df-mpo 7153  df-map 8400  df-pm 8401  df-neg 10865  df-z 11974  df-uz 12236  df-ulm 24957
This theorem is referenced by:  ulmcl  24961  ulmf  24962  ulm2  24965
  Copyright terms: Public domain W3C validator