Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr2adedgwlk Structured version   Visualization version   GIF version

 Description: In a multigraph, two adjacent edges form a walk of length 2. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Revised by AV, 29-Jan-2021.)
Hypotheses
Ref Expression
umgr2adedgwlk.a (𝜑 → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))
umgr2adedgwlk.j (𝜑 → (𝐼𝐽) = {𝐴, 𝐵})
umgr2adedgwlk.k (𝜑 → (𝐼𝐾) = {𝐵, 𝐶})
Assertion
Ref Expression
umgr2adedgwlk (𝜑 → (𝐹(Walks‘𝐺)𝑃 ∧ (#‘𝐹) = 2 ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2))))

StepHypRef Expression
1 umgr2adedgwlk.p . . 3 𝑃 = ⟨“𝐴𝐵𝐶”⟩
2 umgr2adedgwlk.f . . 3 𝐹 = ⟨“𝐽𝐾”⟩
3 umgr2adedgwlk.g . . . . . 6 (𝜑𝐺 ∈ UMGraph )
4 umgr2adedgwlk.a . . . . . 6 (𝜑 → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))
5 3anass 1040 . . . . . 6 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (𝐺 ∈ UMGraph ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
63, 4, 5sylanbrc 697 . . . . 5 (𝜑 → (𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))
7 umgr2adedgwlk.e . . . . . 6 𝐸 = (Edg‘𝐺)
87umgr2adedgwlklem 26716 . . . . 5 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ((𝐴𝐵𝐵𝐶) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))))
96, 8syl 17 . . . 4 (𝜑 → ((𝐴𝐵𝐵𝐶) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))))
109simprd 479 . . 3 (𝜑 → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))
119simpld 475 . . 3 (𝜑 → (𝐴𝐵𝐵𝐶))
12 ssid 3605 . . . . 5 {𝐴, 𝐵} ⊆ {𝐴, 𝐵}
13 umgr2adedgwlk.j . . . . 5 (𝜑 → (𝐼𝐽) = {𝐴, 𝐵})
1412, 13syl5sseqr 3635 . . . 4 (𝜑 → {𝐴, 𝐵} ⊆ (𝐼𝐽))
15 ssid 3605 . . . . 5 {𝐵, 𝐶} ⊆ {𝐵, 𝐶}
16 umgr2adedgwlk.k . . . . 5 (𝜑 → (𝐼𝐾) = {𝐵, 𝐶})
1715, 16syl5sseqr 3635 . . . 4 (𝜑 → {𝐵, 𝐶} ⊆ (𝐼𝐾))
1814, 17jca 554 . . 3 (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾)))
19 eqid 2621 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
20 umgr2adedgwlk.i . . 3 𝐼 = (iEdg‘𝐺)
211, 2, 10, 11, 18, 19, 202wlkd 26708 . 2 (𝜑𝐹(Walks‘𝐺)𝑃)
222fveq2i 6153 . . . 4 (#‘𝐹) = (#‘⟨“𝐽𝐾”⟩)
23 s2len 13573 . . . 4 (#‘⟨“𝐽𝐾”⟩) = 2
2422, 23eqtri 2643 . . 3 (#‘𝐹) = 2
2524a1i 11 . 2 (𝜑 → (#‘𝐹) = 2)
26 s3fv0 13575 . . . . 5 (𝐴 ∈ (Vtx‘𝐺) → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
27 s3fv1 13576 . . . . 5 (𝐵 ∈ (Vtx‘𝐺) → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
28 s3fv2 13577 . . . . 5 (𝐶 ∈ (Vtx‘𝐺) → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
2926, 27, 283anim123i 1245 . . . 4 ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) → ((⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴 ∧ (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵 ∧ (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶))
3010, 29syl 17 . . 3 (𝜑 → ((⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴 ∧ (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵 ∧ (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶))
311fveq1i 6151 . . . . . 6 (𝑃‘0) = (⟨“𝐴𝐵𝐶”⟩‘0)
3231eqeq2i 2633 . . . . 5 (𝐴 = (𝑃‘0) ↔ 𝐴 = (⟨“𝐴𝐵𝐶”⟩‘0))
33 eqcom 2628 . . . . 5 (𝐴 = (⟨“𝐴𝐵𝐶”⟩‘0) ↔ (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
3432, 33bitri 264 . . . 4 (𝐴 = (𝑃‘0) ↔ (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
351fveq1i 6151 . . . . . 6 (𝑃‘1) = (⟨“𝐴𝐵𝐶”⟩‘1)
3635eqeq2i 2633 . . . . 5 (𝐵 = (𝑃‘1) ↔ 𝐵 = (⟨“𝐴𝐵𝐶”⟩‘1))
37 eqcom 2628 . . . . 5 (𝐵 = (⟨“𝐴𝐵𝐶”⟩‘1) ↔ (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
3836, 37bitri 264 . . . 4 (𝐵 = (𝑃‘1) ↔ (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
391fveq1i 6151 . . . . . 6 (𝑃‘2) = (⟨“𝐴𝐵𝐶”⟩‘2)
4039eqeq2i 2633 . . . . 5 (𝐶 = (𝑃‘2) ↔ 𝐶 = (⟨“𝐴𝐵𝐶”⟩‘2))
41 eqcom 2628 . . . . 5 (𝐶 = (⟨“𝐴𝐵𝐶”⟩‘2) ↔ (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
4240, 41bitri 264 . . . 4 (𝐶 = (𝑃‘2) ↔ (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
4334, 38, 423anbi123i 1249 . . 3 ((𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2)) ↔ ((⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴 ∧ (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵 ∧ (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶))
4430, 43sylibr 224 . 2 (𝜑 → (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2)))
4521, 25, 443jca 1240 1 (𝜑 → (𝐹(Walks‘𝐺)𝑃 ∧ (#‘𝐹) = 2 ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987   ≠ wne 2790   ⊆ wss 3556  {cpr 4152   class class class wbr 4615  ‘cfv 5849  0cc0 9883  1c1 9884  2c2 11017  #chash 13060  ⟨“cs2 13526  ⟨“cs3 13527  Vtxcvtx 25781  iEdgciedg 25782  Edgcedg 25846   UMGraph cumgr 25879  Walkscwlks 26369 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1012  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-int 4443  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-1st 7116  df-2nd 7117  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-1o 7508  df-oadd 7512  df-er 7690  df-map 7807  df-pm 7808  df-en 7903  df-dom 7904  df-sdom 7905  df-fin 7906  df-card 8712  df-cda 8937  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-nn 10968  df-2 11026  df-3 11027  df-n0 11240  df-z 11325  df-uz 11635  df-fz 12272  df-fzo 12410  df-hash 13061  df-word 13241  df-concat 13243  df-s1 13244  df-s2 13533  df-s3 13534  df-edg 25847  df-umgr 25881  df-wlks 26372 This theorem is referenced by:  umgr2adedgwlkonALT  26719  umgr2wlk  26721
 Copyright terms: Public domain W3C validator