Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr2adedgwlkonALT Structured version   Visualization version   GIF version

 Description: Alternate proof for umgr2adedgwlkon 26728, using umgr2adedgwlk 26727, but with a much longer proof! In a multigraph, two adjacent edges form a walk between two (different) vertices. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Revised by AV, 30-Jan-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
umgr2adedgwlk.a (𝜑 → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))
umgr2adedgwlk.j (𝜑 → (𝐼𝐽) = {𝐴, 𝐵})
umgr2adedgwlk.k (𝜑 → (𝐼𝐾) = {𝐵, 𝐶})
Assertion
Ref Expression

StepHypRef Expression
1 umgr2adedgwlk.e . . . 4 𝐸 = (Edg‘𝐺)
2 umgr2adedgwlk.i . . . 4 𝐼 = (iEdg‘𝐺)
3 umgr2adedgwlk.f . . . 4 𝐹 = ⟨“𝐽𝐾”⟩
4 umgr2adedgwlk.p . . . 4 𝑃 = ⟨“𝐴𝐵𝐶”⟩
5 umgr2adedgwlk.g . . . 4 (𝜑𝐺 ∈ UMGraph )
6 umgr2adedgwlk.a . . . 4 (𝜑 → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))
7 umgr2adedgwlk.j . . . 4 (𝜑 → (𝐼𝐽) = {𝐴, 𝐵})
8 umgr2adedgwlk.k . . . 4 (𝜑 → (𝐼𝐾) = {𝐵, 𝐶})
91, 2, 3, 4, 5, 6, 7, 8umgr2adedgwlk 26727 . . 3 (𝜑 → (𝐹(Walks‘𝐺)𝑃 ∧ (#‘𝐹) = 2 ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2))))
10 simp1 1059 . . . 4 ((𝐹(Walks‘𝐺)𝑃 ∧ (#‘𝐹) = 2 ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2))) → 𝐹(Walks‘𝐺)𝑃)
11 id 22 . . . . . . 7 ((𝑃‘0) = 𝐴 → (𝑃‘0) = 𝐴)
1211eqcoms 2629 . . . . . 6 (𝐴 = (𝑃‘0) → (𝑃‘0) = 𝐴)
13123ad2ant1 1080 . . . . 5 ((𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2)) → (𝑃‘0) = 𝐴)
14133ad2ant3 1082 . . . 4 ((𝐹(Walks‘𝐺)𝑃 ∧ (#‘𝐹) = 2 ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2))) → (𝑃‘0) = 𝐴)
15 fveq2 6153 . . . . . . . . . . . 12 (2 = (#‘𝐹) → (𝑃‘2) = (𝑃‘(#‘𝐹)))
1615eqcoms 2629 . . . . . . . . . . 11 ((#‘𝐹) = 2 → (𝑃‘2) = (𝑃‘(#‘𝐹)))
1716eqeq1d 2623 . . . . . . . . . 10 ((#‘𝐹) = 2 → ((𝑃‘2) = 𝐶 ↔ (𝑃‘(#‘𝐹)) = 𝐶))
1817biimpcd 239 . . . . . . . . 9 ((𝑃‘2) = 𝐶 → ((#‘𝐹) = 2 → (𝑃‘(#‘𝐹)) = 𝐶))
1918eqcoms 2629 . . . . . . . 8 (𝐶 = (𝑃‘2) → ((#‘𝐹) = 2 → (𝑃‘(#‘𝐹)) = 𝐶))
20193ad2ant3 1082 . . . . . . 7 ((𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2)) → ((#‘𝐹) = 2 → (𝑃‘(#‘𝐹)) = 𝐶))
2120com12 32 . . . . . 6 ((#‘𝐹) = 2 → ((𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2)) → (𝑃‘(#‘𝐹)) = 𝐶))
2221a1i 11 . . . . 5 (𝐹(Walks‘𝐺)𝑃 → ((#‘𝐹) = 2 → ((𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2)) → (𝑃‘(#‘𝐹)) = 𝐶)))
23223imp 1254 . . . 4 ((𝐹(Walks‘𝐺)𝑃 ∧ (#‘𝐹) = 2 ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2))) → (𝑃‘(#‘𝐹)) = 𝐶)
2410, 14, 233jca 1240 . . 3 ((𝐹(Walks‘𝐺)𝑃 ∧ (#‘𝐹) = 2 ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2))) → (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐶))
259, 24syl 17 . 2 (𝜑 → (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐶))
26 3anass 1040 . . . . . 6 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (𝐺 ∈ UMGraph ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
275, 6, 26sylanbrc 697 . . . . 5 (𝜑 → (𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))
281umgr2adedgwlklem 26726 . . . . 5 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ((𝐴𝐵𝐵𝐶) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))))
29 3simpb 1057 . . . . . 6 ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))
3029adantl 482 . . . . 5 (((𝐴𝐵𝐵𝐶) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))
3127, 28, 303syl 18 . . . 4 (𝜑 → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))
32 3anass 1040 . . . 4 ((𝐺 ∈ UMGraph ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) ↔ (𝐺 ∈ UMGraph ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))))
335, 31, 32sylanbrc 697 . . 3 (𝜑 → (𝐺 ∈ UMGraph ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))
34 s2cli 13569 . . . . 5 ⟨“𝐽𝐾”⟩ ∈ Word V
353, 34eqeltri 2694 . . . 4 𝐹 ∈ Word V
36 s3cli 13570 . . . . 5 ⟨“𝐴𝐵𝐶”⟩ ∈ Word V
374, 36eqeltri 2694 . . . 4 𝑃 ∈ Word V
3835, 37pm3.2i 471 . . 3 (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V)
39 id 22 . . . . . 6 ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))
40393adant1 1077 . . . . 5 ((𝐺 ∈ UMGraph ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))
4140anim1i 591 . . . 4 (((𝐺 ∈ UMGraph ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V)) → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V)))
42 eqid 2621 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
4342iswlkon 26439 . . . 4 (((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V)) → (𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐶)))
4441, 43syl 17 . . 3 (((𝐺 ∈ UMGraph ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V)) → (𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐶)))
4533, 38, 44sylancl 693 . 2 (𝜑 → (𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐶)))
4625, 45mpbird 247 1 (𝜑𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  Vcvv 3189  {cpr 4155   class class class wbr 4618  ‘cfv 5852  (class class class)co 6610  0cc0 9888  1c1 9889  2c2 11022  #chash 13065  Word cword 13238  ⟨“cs2 13531  ⟨“cs3 13532  Vtxcvtx 25791  iEdgciedg 25792  Edgcedg 25856   UMGraph cumgr 25889  Walkscwlks 26379  WalksOncwlkson 26380 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1012  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-map 7811  df-pm 7812  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-card 8717  df-cda 8942  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-nn 10973  df-2 11031  df-3 11032  df-n0 11245  df-z 11330  df-uz 11640  df-fz 12277  df-fzo 12415  df-hash 13066  df-word 13246  df-concat 13248  df-s1 13249  df-s2 13538  df-s3 13539  df-edg 25857  df-umgr 25891  df-wlks 26382  df-wlkson 26383 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator