Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgrislfupgr Structured version   Visualization version   GIF version

Theorem umgrislfupgr 26063
 Description: A multigraph is a loop-free pseudograph. (Contributed by AV, 27-Jan-2021.)
Hypotheses
Ref Expression
umgrislfupgr.v 𝑉 = (Vtx‘𝐺)
umgrislfupgr.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
umgrislfupgr (𝐺 ∈ UMGraph ↔ (𝐺 ∈ UPGraph ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)}))
Distinct variable groups:   𝑥,𝐺   𝑥,𝑉
Allowed substitution hint:   𝐼(𝑥)

Proof of Theorem umgrislfupgr
StepHypRef Expression
1 umgrupgr 26043 . . 3 (𝐺 ∈ UMGraph → 𝐺 ∈ UPGraph)
2 umgrislfupgr.v . . . . 5 𝑉 = (Vtx‘𝐺)
3 umgrislfupgr.i . . . . 5 𝐼 = (iEdg‘𝐺)
42, 3umgrf 26038 . . . 4 (𝐺 ∈ UMGraph → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2})
5 id 22 . . . . 5 (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2} → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2})
6 2re 11128 . . . . . . . . . . 11 2 ∈ ℝ
76leidi 10600 . . . . . . . . . 10 2 ≤ 2
87a1i 11 . . . . . . . . 9 ((#‘𝑥) = 2 → 2 ≤ 2)
9 breq2 4689 . . . . . . . . 9 ((#‘𝑥) = 2 → (2 ≤ (#‘𝑥) ↔ 2 ≤ 2))
108, 9mpbird 247 . . . . . . . 8 ((#‘𝑥) = 2 → 2 ≤ (#‘𝑥))
1110a1i 11 . . . . . . 7 (𝑥 ∈ 𝒫 𝑉 → ((#‘𝑥) = 2 → 2 ≤ (#‘𝑥)))
1211ss2rabi 3717 . . . . . 6 {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2} ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)}
1312a1i 11 . . . . 5 (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2} → {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2} ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)})
145, 13fssd 6095 . . . 4 (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2} → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)})
154, 14syl 17 . . 3 (𝐺 ∈ UMGraph → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)})
161, 15jca 553 . 2 (𝐺 ∈ UMGraph → (𝐺 ∈ UPGraph ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)}))
172, 3upgrf 26026 . . . 4 (𝐺 ∈ UPGraph → 𝐼:dom 𝐼⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2})
18 fin 6123 . . . . 5 (𝐼:dom 𝐼⟶({𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)}) ↔ (𝐼:dom 𝐼⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2} ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)}))
19 umgrislfupgrlem 26062 . . . . . 6 ({𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)}) = {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) = 2}
20 feq3 6066 . . . . . 6 (({𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)}) = {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) = 2} → (𝐼:dom 𝐼⟶({𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)}) ↔ 𝐼:dom 𝐼⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) = 2}))
2119, 20ax-mp 5 . . . . 5 (𝐼:dom 𝐼⟶({𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)}) ↔ 𝐼:dom 𝐼⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) = 2})
2218, 21sylbb1 227 . . . 4 ((𝐼:dom 𝐼⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2} ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)}) → 𝐼:dom 𝐼⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) = 2})
2317, 22sylan 487 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)}) → 𝐼:dom 𝐼⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) = 2})
242, 3isumgr 26035 . . . 4 (𝐺 ∈ UPGraph → (𝐺 ∈ UMGraph ↔ 𝐼:dom 𝐼⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) = 2}))
2524adantr 480 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)}) → (𝐺 ∈ UMGraph ↔ 𝐼:dom 𝐼⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) = 2}))
2623, 25mpbird 247 . 2 ((𝐺 ∈ UPGraph ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)}) → 𝐺 ∈ UMGraph)
2716, 26impbii 199 1 (𝐺 ∈ UMGraph ↔ (𝐺 ∈ UPGraph ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)}))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1523   ∈ wcel 2030  {crab 2945   ∖ cdif 3604   ∩ cin 3606   ⊆ wss 3607  ∅c0 3948  𝒫 cpw 4191  {csn 4210   class class class wbr 4685  dom cdm 5143  ⟶wf 5922  ‘cfv 5926   ≤ cle 10113  2c2 11108  #chash 13157  Vtxcvtx 25919  iEdgciedg 25920  UPGraphcupgr 26020  UMGraphcumgr 26021 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-fz 12365  df-hash 13158  df-upgr 26022  df-umgr 26023 This theorem is referenced by:  vdumgr0  26432  vtxdumgrval  26438  umgrn1cycl  26755
 Copyright terms: Public domain W3C validator