MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgrnloopv Structured version   Visualization version   GIF version

Theorem umgrnloopv 25930
Description: In a multigraph, there is no loop, i.e. no edge connecting a vertex with itself. (Contributed by Alexander van der Vekens, 26-Jan-2018.) (Revised by AV, 11-Dec-2020.)
Hypothesis
Ref Expression
umgrnloopv.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
umgrnloopv ((𝐺 ∈ UMGraph ∧ 𝑀𝑊) → ((𝐸𝑋) = {𝑀, 𝑁} → 𝑀𝑁))

Proof of Theorem umgrnloopv
StepHypRef Expression
1 prnzg 4288 . . . . . . . 8 (𝑀𝑊 → {𝑀, 𝑁} ≠ ∅)
21adantl 482 . . . . . . 7 (((𝐸𝑋) = {𝑀, 𝑁} ∧ 𝑀𝑊) → {𝑀, 𝑁} ≠ ∅)
3 neeq1 2852 . . . . . . . 8 ((𝐸𝑋) = {𝑀, 𝑁} → ((𝐸𝑋) ≠ ∅ ↔ {𝑀, 𝑁} ≠ ∅))
43adantr 481 . . . . . . 7 (((𝐸𝑋) = {𝑀, 𝑁} ∧ 𝑀𝑊) → ((𝐸𝑋) ≠ ∅ ↔ {𝑀, 𝑁} ≠ ∅))
52, 4mpbird 247 . . . . . 6 (((𝐸𝑋) = {𝑀, 𝑁} ∧ 𝑀𝑊) → (𝐸𝑋) ≠ ∅)
6 fvfundmfvn0 6193 . . . . . 6 ((𝐸𝑋) ≠ ∅ → (𝑋 ∈ dom 𝐸 ∧ Fun (𝐸 ↾ {𝑋})))
75, 6syl 17 . . . . 5 (((𝐸𝑋) = {𝑀, 𝑁} ∧ 𝑀𝑊) → (𝑋 ∈ dom 𝐸 ∧ Fun (𝐸 ↾ {𝑋})))
8 eqid 2621 . . . . . . . . . 10 (Vtx‘𝐺) = (Vtx‘𝐺)
9 umgrnloopv.e . . . . . . . . . 10 𝐸 = (iEdg‘𝐺)
108, 9umgredg2 25924 . . . . . . . . 9 ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) → (#‘(𝐸𝑋)) = 2)
11 fveq2 6158 . . . . . . . . . . . 12 ((𝐸𝑋) = {𝑀, 𝑁} → (#‘(𝐸𝑋)) = (#‘{𝑀, 𝑁}))
1211eqeq1d 2623 . . . . . . . . . . 11 ((𝐸𝑋) = {𝑀, 𝑁} → ((#‘(𝐸𝑋)) = 2 ↔ (#‘{𝑀, 𝑁}) = 2))
13 eqid 2621 . . . . . . . . . . . . 13 {𝑀, 𝑁} = {𝑀, 𝑁}
1413hashprdifel 13142 . . . . . . . . . . . 12 ((#‘{𝑀, 𝑁}) = 2 → (𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁} ∧ 𝑀𝑁))
1514simp3d 1073 . . . . . . . . . . 11 ((#‘{𝑀, 𝑁}) = 2 → 𝑀𝑁)
1612, 15syl6bi 243 . . . . . . . . . 10 ((𝐸𝑋) = {𝑀, 𝑁} → ((#‘(𝐸𝑋)) = 2 → 𝑀𝑁))
1716adantr 481 . . . . . . . . 9 (((𝐸𝑋) = {𝑀, 𝑁} ∧ 𝑀𝑊) → ((#‘(𝐸𝑋)) = 2 → 𝑀𝑁))
1810, 17syl5com 31 . . . . . . . 8 ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) → (((𝐸𝑋) = {𝑀, 𝑁} ∧ 𝑀𝑊) → 𝑀𝑁))
1918expcom 451 . . . . . . 7 (𝑋 ∈ dom 𝐸 → (𝐺 ∈ UMGraph → (((𝐸𝑋) = {𝑀, 𝑁} ∧ 𝑀𝑊) → 𝑀𝑁)))
2019com23 86 . . . . . 6 (𝑋 ∈ dom 𝐸 → (((𝐸𝑋) = {𝑀, 𝑁} ∧ 𝑀𝑊) → (𝐺 ∈ UMGraph → 𝑀𝑁)))
2120adantr 481 . . . . 5 ((𝑋 ∈ dom 𝐸 ∧ Fun (𝐸 ↾ {𝑋})) → (((𝐸𝑋) = {𝑀, 𝑁} ∧ 𝑀𝑊) → (𝐺 ∈ UMGraph → 𝑀𝑁)))
227, 21mpcom 38 . . . 4 (((𝐸𝑋) = {𝑀, 𝑁} ∧ 𝑀𝑊) → (𝐺 ∈ UMGraph → 𝑀𝑁))
2322ex 450 . . 3 ((𝐸𝑋) = {𝑀, 𝑁} → (𝑀𝑊 → (𝐺 ∈ UMGraph → 𝑀𝑁)))
2423com13 88 . 2 (𝐺 ∈ UMGraph → (𝑀𝑊 → ((𝐸𝑋) = {𝑀, 𝑁} → 𝑀𝑁)))
2524imp 445 1 ((𝐺 ∈ UMGraph ∧ 𝑀𝑊) → ((𝐸𝑋) = {𝑀, 𝑁} → 𝑀𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wne 2790  c0 3897  {csn 4155  {cpr 4157  dom cdm 5084  cres 5086  Fun wfun 5851  cfv 5857  2c2 11030  #chash 13073  Vtxcvtx 25808  iEdgciedg 25809   UMGraph cumgr 25906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-oadd 7524  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-card 8725  df-cda 8950  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-2 11039  df-n0 11253  df-z 11338  df-uz 11648  df-fz 12285  df-hash 13074  df-umgr 25908
This theorem is referenced by:  umgrnloop  25932  usgrnloopv  26019
  Copyright terms: Public domain W3C validator