MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  un0addcl Structured version   Visualization version   GIF version

Theorem un0addcl 11922
Description: If 𝑆 is closed under addition, then so is 𝑆 ∪ {0}. (Contributed by Mario Carneiro, 17-Jul-2014.)
Hypotheses
Ref Expression
un0addcl.1 (𝜑𝑆 ⊆ ℂ)
un0addcl.2 𝑇 = (𝑆 ∪ {0})
un0addcl.3 ((𝜑 ∧ (𝑀𝑆𝑁𝑆)) → (𝑀 + 𝑁) ∈ 𝑆)
Assertion
Ref Expression
un0addcl ((𝜑 ∧ (𝑀𝑇𝑁𝑇)) → (𝑀 + 𝑁) ∈ 𝑇)

Proof of Theorem un0addcl
StepHypRef Expression
1 un0addcl.2 . . . . 5 𝑇 = (𝑆 ∪ {0})
21eleq2i 2902 . . . 4 (𝑁𝑇𝑁 ∈ (𝑆 ∪ {0}))
3 elun 4123 . . . 4 (𝑁 ∈ (𝑆 ∪ {0}) ↔ (𝑁𝑆𝑁 ∈ {0}))
42, 3bitri 277 . . 3 (𝑁𝑇 ↔ (𝑁𝑆𝑁 ∈ {0}))
51eleq2i 2902 . . . . . 6 (𝑀𝑇𝑀 ∈ (𝑆 ∪ {0}))
6 elun 4123 . . . . . 6 (𝑀 ∈ (𝑆 ∪ {0}) ↔ (𝑀𝑆𝑀 ∈ {0}))
75, 6bitri 277 . . . . 5 (𝑀𝑇 ↔ (𝑀𝑆𝑀 ∈ {0}))
8 ssun1 4146 . . . . . . . . 9 𝑆 ⊆ (𝑆 ∪ {0})
98, 1sseqtrri 4002 . . . . . . . 8 𝑆𝑇
10 un0addcl.3 . . . . . . . 8 ((𝜑 ∧ (𝑀𝑆𝑁𝑆)) → (𝑀 + 𝑁) ∈ 𝑆)
119, 10sseldi 3963 . . . . . . 7 ((𝜑 ∧ (𝑀𝑆𝑁𝑆)) → (𝑀 + 𝑁) ∈ 𝑇)
1211expr 459 . . . . . 6 ((𝜑𝑀𝑆) → (𝑁𝑆 → (𝑀 + 𝑁) ∈ 𝑇))
13 un0addcl.1 . . . . . . . . . . 11 (𝜑𝑆 ⊆ ℂ)
1413sselda 3965 . . . . . . . . . 10 ((𝜑𝑁𝑆) → 𝑁 ∈ ℂ)
1514addid2d 10833 . . . . . . . . 9 ((𝜑𝑁𝑆) → (0 + 𝑁) = 𝑁)
169a1i 11 . . . . . . . . . 10 (𝜑𝑆𝑇)
1716sselda 3965 . . . . . . . . 9 ((𝜑𝑁𝑆) → 𝑁𝑇)
1815, 17eqeltrd 2911 . . . . . . . 8 ((𝜑𝑁𝑆) → (0 + 𝑁) ∈ 𝑇)
19 elsni 4576 . . . . . . . . . 10 (𝑀 ∈ {0} → 𝑀 = 0)
2019oveq1d 7163 . . . . . . . . 9 (𝑀 ∈ {0} → (𝑀 + 𝑁) = (0 + 𝑁))
2120eleq1d 2895 . . . . . . . 8 (𝑀 ∈ {0} → ((𝑀 + 𝑁) ∈ 𝑇 ↔ (0 + 𝑁) ∈ 𝑇))
2218, 21syl5ibrcom 249 . . . . . . 7 ((𝜑𝑁𝑆) → (𝑀 ∈ {0} → (𝑀 + 𝑁) ∈ 𝑇))
2322impancom 454 . . . . . 6 ((𝜑𝑀 ∈ {0}) → (𝑁𝑆 → (𝑀 + 𝑁) ∈ 𝑇))
2412, 23jaodan 954 . . . . 5 ((𝜑 ∧ (𝑀𝑆𝑀 ∈ {0})) → (𝑁𝑆 → (𝑀 + 𝑁) ∈ 𝑇))
257, 24sylan2b 595 . . . 4 ((𝜑𝑀𝑇) → (𝑁𝑆 → (𝑀 + 𝑁) ∈ 𝑇))
26 0cnd 10626 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℂ)
2726snssd 4734 . . . . . . . . . 10 (𝜑 → {0} ⊆ ℂ)
2813, 27unssd 4160 . . . . . . . . 9 (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ)
291, 28eqsstrid 4013 . . . . . . . 8 (𝜑𝑇 ⊆ ℂ)
3029sselda 3965 . . . . . . 7 ((𝜑𝑀𝑇) → 𝑀 ∈ ℂ)
3130addid1d 10832 . . . . . 6 ((𝜑𝑀𝑇) → (𝑀 + 0) = 𝑀)
32 simpr 487 . . . . . 6 ((𝜑𝑀𝑇) → 𝑀𝑇)
3331, 32eqeltrd 2911 . . . . 5 ((𝜑𝑀𝑇) → (𝑀 + 0) ∈ 𝑇)
34 elsni 4576 . . . . . . 7 (𝑁 ∈ {0} → 𝑁 = 0)
3534oveq2d 7164 . . . . . 6 (𝑁 ∈ {0} → (𝑀 + 𝑁) = (𝑀 + 0))
3635eleq1d 2895 . . . . 5 (𝑁 ∈ {0} → ((𝑀 + 𝑁) ∈ 𝑇 ↔ (𝑀 + 0) ∈ 𝑇))
3733, 36syl5ibrcom 249 . . . 4 ((𝜑𝑀𝑇) → (𝑁 ∈ {0} → (𝑀 + 𝑁) ∈ 𝑇))
3825, 37jaod 855 . . 3 ((𝜑𝑀𝑇) → ((𝑁𝑆𝑁 ∈ {0}) → (𝑀 + 𝑁) ∈ 𝑇))
394, 38syl5bi 244 . 2 ((𝜑𝑀𝑇) → (𝑁𝑇 → (𝑀 + 𝑁) ∈ 𝑇))
4039impr 457 1 ((𝜑 ∧ (𝑀𝑇𝑁𝑇)) → (𝑀 + 𝑁) ∈ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843   = wceq 1531  wcel 2108  cun 3932  wss 3934  {csn 4559  (class class class)co 7148  cc 10527  0cc0 10529   + caddc 10532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7151  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-ltxr 10672
This theorem is referenced by:  nn0addcl  11924  plyaddlem  24797  plymullem  24798
  Copyright terms: Public domain W3C validator