MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  un0addcl Structured version   Visualization version   GIF version

Theorem un0addcl 11518
Description: If 𝑆 is closed under addition, then so is 𝑆 ∪ {0}. (Contributed by Mario Carneiro, 17-Jul-2014.)
Hypotheses
Ref Expression
un0addcl.1 (𝜑𝑆 ⊆ ℂ)
un0addcl.2 𝑇 = (𝑆 ∪ {0})
un0addcl.3 ((𝜑 ∧ (𝑀𝑆𝑁𝑆)) → (𝑀 + 𝑁) ∈ 𝑆)
Assertion
Ref Expression
un0addcl ((𝜑 ∧ (𝑀𝑇𝑁𝑇)) → (𝑀 + 𝑁) ∈ 𝑇)

Proof of Theorem un0addcl
StepHypRef Expression
1 un0addcl.2 . . . . 5 𝑇 = (𝑆 ∪ {0})
21eleq2i 2831 . . . 4 (𝑁𝑇𝑁 ∈ (𝑆 ∪ {0}))
3 elun 3896 . . . 4 (𝑁 ∈ (𝑆 ∪ {0}) ↔ (𝑁𝑆𝑁 ∈ {0}))
42, 3bitri 264 . . 3 (𝑁𝑇 ↔ (𝑁𝑆𝑁 ∈ {0}))
51eleq2i 2831 . . . . . 6 (𝑀𝑇𝑀 ∈ (𝑆 ∪ {0}))
6 elun 3896 . . . . . 6 (𝑀 ∈ (𝑆 ∪ {0}) ↔ (𝑀𝑆𝑀 ∈ {0}))
75, 6bitri 264 . . . . 5 (𝑀𝑇 ↔ (𝑀𝑆𝑀 ∈ {0}))
8 ssun1 3919 . . . . . . . . 9 𝑆 ⊆ (𝑆 ∪ {0})
98, 1sseqtr4i 3779 . . . . . . . 8 𝑆𝑇
10 un0addcl.3 . . . . . . . 8 ((𝜑 ∧ (𝑀𝑆𝑁𝑆)) → (𝑀 + 𝑁) ∈ 𝑆)
119, 10sseldi 3742 . . . . . . 7 ((𝜑 ∧ (𝑀𝑆𝑁𝑆)) → (𝑀 + 𝑁) ∈ 𝑇)
1211expr 644 . . . . . 6 ((𝜑𝑀𝑆) → (𝑁𝑆 → (𝑀 + 𝑁) ∈ 𝑇))
13 un0addcl.1 . . . . . . . . . . 11 (𝜑𝑆 ⊆ ℂ)
1413sselda 3744 . . . . . . . . . 10 ((𝜑𝑁𝑆) → 𝑁 ∈ ℂ)
1514addid2d 10429 . . . . . . . . 9 ((𝜑𝑁𝑆) → (0 + 𝑁) = 𝑁)
169a1i 11 . . . . . . . . . 10 (𝜑𝑆𝑇)
1716sselda 3744 . . . . . . . . 9 ((𝜑𝑁𝑆) → 𝑁𝑇)
1815, 17eqeltrd 2839 . . . . . . . 8 ((𝜑𝑁𝑆) → (0 + 𝑁) ∈ 𝑇)
19 elsni 4338 . . . . . . . . . 10 (𝑀 ∈ {0} → 𝑀 = 0)
2019oveq1d 6828 . . . . . . . . 9 (𝑀 ∈ {0} → (𝑀 + 𝑁) = (0 + 𝑁))
2120eleq1d 2824 . . . . . . . 8 (𝑀 ∈ {0} → ((𝑀 + 𝑁) ∈ 𝑇 ↔ (0 + 𝑁) ∈ 𝑇))
2218, 21syl5ibrcom 237 . . . . . . 7 ((𝜑𝑁𝑆) → (𝑀 ∈ {0} → (𝑀 + 𝑁) ∈ 𝑇))
2322impancom 455 . . . . . 6 ((𝜑𝑀 ∈ {0}) → (𝑁𝑆 → (𝑀 + 𝑁) ∈ 𝑇))
2412, 23jaodan 861 . . . . 5 ((𝜑 ∧ (𝑀𝑆𝑀 ∈ {0})) → (𝑁𝑆 → (𝑀 + 𝑁) ∈ 𝑇))
257, 24sylan2b 493 . . . 4 ((𝜑𝑀𝑇) → (𝑁𝑆 → (𝑀 + 𝑁) ∈ 𝑇))
26 0cnd 10225 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℂ)
2726snssd 4485 . . . . . . . . . 10 (𝜑 → {0} ⊆ ℂ)
2813, 27unssd 3932 . . . . . . . . 9 (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ)
291, 28syl5eqss 3790 . . . . . . . 8 (𝜑𝑇 ⊆ ℂ)
3029sselda 3744 . . . . . . 7 ((𝜑𝑀𝑇) → 𝑀 ∈ ℂ)
3130addid1d 10428 . . . . . 6 ((𝜑𝑀𝑇) → (𝑀 + 0) = 𝑀)
32 simpr 479 . . . . . 6 ((𝜑𝑀𝑇) → 𝑀𝑇)
3331, 32eqeltrd 2839 . . . . 5 ((𝜑𝑀𝑇) → (𝑀 + 0) ∈ 𝑇)
34 elsni 4338 . . . . . . 7 (𝑁 ∈ {0} → 𝑁 = 0)
3534oveq2d 6829 . . . . . 6 (𝑁 ∈ {0} → (𝑀 + 𝑁) = (𝑀 + 0))
3635eleq1d 2824 . . . . 5 (𝑁 ∈ {0} → ((𝑀 + 𝑁) ∈ 𝑇 ↔ (𝑀 + 0) ∈ 𝑇))
3733, 36syl5ibrcom 237 . . . 4 ((𝜑𝑀𝑇) → (𝑁 ∈ {0} → (𝑀 + 𝑁) ∈ 𝑇))
3825, 37jaod 394 . . 3 ((𝜑𝑀𝑇) → ((𝑁𝑆𝑁 ∈ {0}) → (𝑀 + 𝑁) ∈ 𝑇))
394, 38syl5bi 232 . 2 ((𝜑𝑀𝑇) → (𝑁𝑇 → (𝑀 + 𝑁) ∈ 𝑇))
4039impr 650 1 ((𝜑 ∧ (𝑀𝑇𝑁𝑇)) → (𝑀 + 𝑁) ∈ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383   = wceq 1632  wcel 2139  cun 3713  wss 3715  {csn 4321  (class class class)co 6813  cc 10126  0cc0 10128   + caddc 10131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6816  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-ltxr 10271
This theorem is referenced by:  nn0addcl  11520  plyaddlem  24170  plymullem  24171
  Copyright terms: Public domain W3C validator