Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unbdqndv2lem1 Structured version   Visualization version   GIF version

Theorem unbdqndv2lem1 32806
Description: Lemma for unbdqndv2 32808. (Contributed by Asger C. Ipsen, 12-May-2021.)
Hypotheses
Ref Expression
unbdqndv2lem1.a (𝜑𝐴 ∈ ℂ)
unbdqndv2lem1.b (𝜑𝐵 ∈ ℂ)
unbdqndv2lem1.c (𝜑𝐶 ∈ ℂ)
unbdqndv2lem1.d (𝜑𝐷 ∈ ℂ)
unbdqndv2lem1.e (𝜑𝐸 ∈ ℝ+)
unbdqndv2lem1.1 (𝜑𝐷 ≠ 0)
unbdqndv2lem1.2 (𝜑 → (2 · 𝐸) ≤ (abs‘((𝐴𝐵) / 𝐷)))
Assertion
Ref Expression
unbdqndv2lem1 (𝜑 → ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶))))

Proof of Theorem unbdqndv2lem1
StepHypRef Expression
1 unbdqndv2lem1.a . . . . . 6 (𝜑𝐴 ∈ ℂ)
2 unbdqndv2lem1.b . . . . . 6 (𝜑𝐵 ∈ ℂ)
31, 2subcld 10584 . . . . 5 (𝜑 → (𝐴𝐵) ∈ ℂ)
4 unbdqndv2lem1.d . . . . 5 (𝜑𝐷 ∈ ℂ)
5 unbdqndv2lem1.1 . . . . 5 (𝜑𝐷 ≠ 0)
63, 4, 5absdivd 14393 . . . 4 (𝜑 → (abs‘((𝐴𝐵) / 𝐷)) = ((abs‘(𝐴𝐵)) / (abs‘𝐷)))
76adantr 472 . . 3 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (abs‘((𝐴𝐵) / 𝐷)) = ((abs‘(𝐴𝐵)) / (abs‘𝐷)))
83abscld 14374 . . . . . 6 (𝜑 → (abs‘(𝐴𝐵)) ∈ ℝ)
98adantr 472 . . . . 5 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (abs‘(𝐴𝐵)) ∈ ℝ)
10 unbdqndv2lem1.c . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
111, 10subcld 10584 . . . . . . . 8 (𝜑 → (𝐴𝐶) ∈ ℂ)
1211abscld 14374 . . . . . . 7 (𝜑 → (abs‘(𝐴𝐶)) ∈ ℝ)
132, 10subcld 10584 . . . . . . . 8 (𝜑 → (𝐵𝐶) ∈ ℂ)
1413abscld 14374 . . . . . . 7 (𝜑 → (abs‘(𝐵𝐶)) ∈ ℝ)
1512, 14readdcld 10261 . . . . . 6 (𝜑 → ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) ∈ ℝ)
1615adantr 472 . . . . 5 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) ∈ ℝ)
17 2re 11282 . . . . . . . . 9 2 ∈ ℝ
1817a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℝ)
19 unbdqndv2lem1.e . . . . . . . . 9 (𝜑𝐸 ∈ ℝ+)
2019rpred 12065 . . . . . . . 8 (𝜑𝐸 ∈ ℝ)
2118, 20remulcld 10262 . . . . . . 7 (𝜑 → (2 · 𝐸) ∈ ℝ)
224abscld 14374 . . . . . . 7 (𝜑 → (abs‘𝐷) ∈ ℝ)
2321, 22remulcld 10262 . . . . . 6 (𝜑 → ((2 · 𝐸) · (abs‘𝐷)) ∈ ℝ)
2423adantr 472 . . . . 5 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ((2 · 𝐸) · (abs‘𝐷)) ∈ ℝ)
251, 2, 10abs3difd 14398 . . . . . . 7 (𝜑 → (abs‘(𝐴𝐵)) ≤ ((abs‘(𝐴𝐶)) + (abs‘(𝐶𝐵))))
2610, 2abssubd 14391 . . . . . . . 8 (𝜑 → (abs‘(𝐶𝐵)) = (abs‘(𝐵𝐶)))
2726oveq2d 6829 . . . . . . 7 (𝜑 → ((abs‘(𝐴𝐶)) + (abs‘(𝐶𝐵))) = ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))))
2825, 27breqtrd 4830 . . . . . 6 (𝜑 → (abs‘(𝐴𝐵)) ≤ ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))))
2928adantr 472 . . . . 5 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (abs‘(𝐴𝐵)) ≤ ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))))
3012adantr 472 . . . . . . 7 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (abs‘(𝐴𝐶)) ∈ ℝ)
3114adantr 472 . . . . . . 7 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (abs‘(𝐵𝐶)) ∈ ℝ)
3220, 22remulcld 10262 . . . . . . . 8 (𝜑 → (𝐸 · (abs‘𝐷)) ∈ ℝ)
3332adantr 472 . . . . . . 7 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (𝐸 · (abs‘𝐷)) ∈ ℝ)
34 pm2.45 411 . . . . . . . . 9 (¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶))) → ¬ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)))
3534adantl 473 . . . . . . . 8 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ¬ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)))
3612, 32ltnled 10376 . . . . . . . . 9 (𝜑 → ((abs‘(𝐴𝐶)) < (𝐸 · (abs‘𝐷)) ↔ ¬ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶))))
3736adantr 472 . . . . . . . 8 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ((abs‘(𝐴𝐶)) < (𝐸 · (abs‘𝐷)) ↔ ¬ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶))))
3835, 37mpbird 247 . . . . . . 7 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (abs‘(𝐴𝐶)) < (𝐸 · (abs‘𝐷)))
39 pm2.46 412 . . . . . . . . 9 (¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶))) → ¬ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))
4039adantl 473 . . . . . . . 8 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ¬ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))
4114, 32ltnled 10376 . . . . . . . . 9 (𝜑 → ((abs‘(𝐵𝐶)) < (𝐸 · (abs‘𝐷)) ↔ ¬ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶))))
4241adantr 472 . . . . . . . 8 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ((abs‘(𝐵𝐶)) < (𝐸 · (abs‘𝐷)) ↔ ¬ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶))))
4340, 42mpbird 247 . . . . . . 7 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (abs‘(𝐵𝐶)) < (𝐸 · (abs‘𝐷)))
4430, 31, 33, 33, 38, 43lt2addd 10842 . . . . . 6 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) < ((𝐸 · (abs‘𝐷)) + (𝐸 · (abs‘𝐷))))
4532recnd 10260 . . . . . . . . . 10 (𝜑 → (𝐸 · (abs‘𝐷)) ∈ ℂ)
46452timesd 11467 . . . . . . . . 9 (𝜑 → (2 · (𝐸 · (abs‘𝐷))) = ((𝐸 · (abs‘𝐷)) + (𝐸 · (abs‘𝐷))))
4746eqcomd 2766 . . . . . . . 8 (𝜑 → ((𝐸 · (abs‘𝐷)) + (𝐸 · (abs‘𝐷))) = (2 · (𝐸 · (abs‘𝐷))))
4818recnd 10260 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
4920recnd 10260 . . . . . . . . . 10 (𝜑𝐸 ∈ ℂ)
5022recnd 10260 . . . . . . . . . 10 (𝜑 → (abs‘𝐷) ∈ ℂ)
5148, 49, 50mulassd 10255 . . . . . . . . 9 (𝜑 → ((2 · 𝐸) · (abs‘𝐷)) = (2 · (𝐸 · (abs‘𝐷))))
5251eqcomd 2766 . . . . . . . 8 (𝜑 → (2 · (𝐸 · (abs‘𝐷))) = ((2 · 𝐸) · (abs‘𝐷)))
5347, 52eqtrd 2794 . . . . . . 7 (𝜑 → ((𝐸 · (abs‘𝐷)) + (𝐸 · (abs‘𝐷))) = ((2 · 𝐸) · (abs‘𝐷)))
5453adantr 472 . . . . . 6 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ((𝐸 · (abs‘𝐷)) + (𝐸 · (abs‘𝐷))) = ((2 · 𝐸) · (abs‘𝐷)))
5544, 54breqtrd 4830 . . . . 5 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) < ((2 · 𝐸) · (abs‘𝐷)))
569, 16, 24, 29, 55lelttrd 10387 . . . 4 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (abs‘(𝐴𝐵)) < ((2 · 𝐸) · (abs‘𝐷)))
57 absgt0 14263 . . . . . . . . . 10 (𝐷 ∈ ℂ → (𝐷 ≠ 0 ↔ 0 < (abs‘𝐷)))
584, 57syl 17 . . . . . . . . 9 (𝜑 → (𝐷 ≠ 0 ↔ 0 < (abs‘𝐷)))
595, 58mpbid 222 . . . . . . . 8 (𝜑 → 0 < (abs‘𝐷))
6022, 59jca 555 . . . . . . 7 (𝜑 → ((abs‘𝐷) ∈ ℝ ∧ 0 < (abs‘𝐷)))
618, 21, 603jca 1123 . . . . . 6 (𝜑 → ((abs‘(𝐴𝐵)) ∈ ℝ ∧ (2 · 𝐸) ∈ ℝ ∧ ((abs‘𝐷) ∈ ℝ ∧ 0 < (abs‘𝐷))))
62 ltdivmul2 11092 . . . . . 6 (((abs‘(𝐴𝐵)) ∈ ℝ ∧ (2 · 𝐸) ∈ ℝ ∧ ((abs‘𝐷) ∈ ℝ ∧ 0 < (abs‘𝐷))) → (((abs‘(𝐴𝐵)) / (abs‘𝐷)) < (2 · 𝐸) ↔ (abs‘(𝐴𝐵)) < ((2 · 𝐸) · (abs‘𝐷))))
6361, 62syl 17 . . . . 5 (𝜑 → (((abs‘(𝐴𝐵)) / (abs‘𝐷)) < (2 · 𝐸) ↔ (abs‘(𝐴𝐵)) < ((2 · 𝐸) · (abs‘𝐷))))
6463adantr 472 . . . 4 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (((abs‘(𝐴𝐵)) / (abs‘𝐷)) < (2 · 𝐸) ↔ (abs‘(𝐴𝐵)) < ((2 · 𝐸) · (abs‘𝐷))))
6556, 64mpbird 247 . . 3 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ((abs‘(𝐴𝐵)) / (abs‘𝐷)) < (2 · 𝐸))
667, 65eqbrtrd 4826 . 2 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → (abs‘((𝐴𝐵) / 𝐷)) < (2 · 𝐸))
67 unbdqndv2lem1.2 . . . 4 (𝜑 → (2 · 𝐸) ≤ (abs‘((𝐴𝐵) / 𝐷)))
683, 4, 5divcld 10993 . . . . . 6 (𝜑 → ((𝐴𝐵) / 𝐷) ∈ ℂ)
6968abscld 14374 . . . . 5 (𝜑 → (abs‘((𝐴𝐵) / 𝐷)) ∈ ℝ)
7021, 69lenltd 10375 . . . 4 (𝜑 → ((2 · 𝐸) ≤ (abs‘((𝐴𝐵) / 𝐷)) ↔ ¬ (abs‘((𝐴𝐵) / 𝐷)) < (2 · 𝐸)))
7167, 70mpbid 222 . . 3 (𝜑 → ¬ (abs‘((𝐴𝐵) / 𝐷)) < (2 · 𝐸))
7271adantr 472 . 2 ((𝜑 ∧ ¬ ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶)))) → ¬ (abs‘((𝐴𝐵) / 𝐷)) < (2 · 𝐸))
7366, 72condan 870 1 (𝜑 → ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932   class class class wbr 4804  cfv 6049  (class class class)co 6813  cc 10126  cr 10127  0cc0 10128   + caddc 10131   · cmul 10133   < clt 10266  cle 10267  cmin 10458   / cdiv 10876  2c2 11262  +crp 12025  abscabs 14173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-sup 8513  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-n0 11485  df-z 11570  df-uz 11880  df-rp 12026  df-seq 12996  df-exp 13055  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175
This theorem is referenced by:  unbdqndv2lem2  32807
  Copyright terms: Public domain W3C validator