MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unblem4 Structured version   Visualization version   GIF version

Theorem unblem4 8767
Description: Lemma for unbnn 8768. The function 𝐹 maps the set of natural numbers one-to-one to the set of unbounded natural numbers 𝐴. (Contributed by NM, 3-Dec-2003.)
Hypothesis
Ref Expression
unblem.2 𝐹 = (rec((𝑥 ∈ V ↦ (𝐴 ∖ suc 𝑥)), 𝐴) ↾ ω)
Assertion
Ref Expression
unblem4 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → 𝐹:ω–1-1𝐴)
Distinct variable groups:   𝑤,𝑣,𝑥,𝐴   𝑣,𝐹,𝑤
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem unblem4
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 omsson 7578 . . . 4 ω ⊆ On
2 sstr 3974 . . . 4 ((𝐴 ⊆ ω ∧ ω ⊆ On) → 𝐴 ⊆ On)
31, 2mpan2 689 . . 3 (𝐴 ⊆ ω → 𝐴 ⊆ On)
43adantr 483 . 2 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → 𝐴 ⊆ On)
5 frfnom 8064 . . . 4 (rec((𝑥 ∈ V ↦ (𝐴 ∖ suc 𝑥)), 𝐴) ↾ ω) Fn ω
6 unblem.2 . . . . 5 𝐹 = (rec((𝑥 ∈ V ↦ (𝐴 ∖ suc 𝑥)), 𝐴) ↾ ω)
76fneq1i 6444 . . . 4 (𝐹 Fn ω ↔ (rec((𝑥 ∈ V ↦ (𝐴 ∖ suc 𝑥)), 𝐴) ↾ ω) Fn ω)
85, 7mpbir 233 . . 3 𝐹 Fn ω
96unblem2 8765 . . . 4 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → (𝑧 ∈ ω → (𝐹𝑧) ∈ 𝐴))
109ralrimiv 3181 . . 3 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → ∀𝑧 ∈ ω (𝐹𝑧) ∈ 𝐴)
11 ffnfv 6876 . . . 4 (𝐹:ω⟶𝐴 ↔ (𝐹 Fn ω ∧ ∀𝑧 ∈ ω (𝐹𝑧) ∈ 𝐴))
1211biimpri 230 . . 3 ((𝐹 Fn ω ∧ ∀𝑧 ∈ ω (𝐹𝑧) ∈ 𝐴) → 𝐹:ω⟶𝐴)
138, 10, 12sylancr 589 . 2 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → 𝐹:ω⟶𝐴)
146unblem3 8766 . . 3 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → (𝑧 ∈ ω → (𝐹𝑧) ∈ (𝐹‘suc 𝑧)))
1514ralrimiv 3181 . 2 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → ∀𝑧 ∈ ω (𝐹𝑧) ∈ (𝐹‘suc 𝑧))
16 omsmo 8275 . 2 (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑧 ∈ ω (𝐹𝑧) ∈ (𝐹‘suc 𝑧)) → 𝐹:ω–1-1𝐴)
174, 13, 15, 16syl21anc 835 1 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → 𝐹:ω–1-1𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wral 3138  wrex 3139  Vcvv 3494  cdif 3932  wss 3935   cint 4868  cmpt 5138  cres 5551  Oncon0 6185  suc csuc 6187   Fn wfn 6344  wf 6345  1-1wf1 6346  cfv 6349  ωcom 7574  reccrdg 8039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040
This theorem is referenced by:  unbnn  8768
  Copyright terms: Public domain W3C validator