Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  uncdadom Structured version   Visualization version   GIF version

 Description: Cardinal addition dominates union. (Contributed by NM, 28-Sep-2004.)
Assertion
Ref Expression
uncdadom ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ≼ (𝐴 +𝑐 𝐵))

StepHypRef Expression
1 0ex 4750 . . . . 5 ∅ ∈ V
2 xpsneng 7989 . . . . 5 ((𝐴𝑉 ∧ ∅ ∈ V) → (𝐴 × {∅}) ≈ 𝐴)
31, 2mpan2 706 . . . 4 (𝐴𝑉 → (𝐴 × {∅}) ≈ 𝐴)
4 ensym 7949 . . . 4 ((𝐴 × {∅}) ≈ 𝐴𝐴 ≈ (𝐴 × {∅}))
5 endom 7926 . . . 4 (𝐴 ≈ (𝐴 × {∅}) → 𝐴 ≼ (𝐴 × {∅}))
63, 4, 53syl 18 . . 3 (𝐴𝑉𝐴 ≼ (𝐴 × {∅}))
7 1on 7512 . . . . 5 1𝑜 ∈ On
8 xpsneng 7989 . . . . 5 ((𝐵𝑊 ∧ 1𝑜 ∈ On) → (𝐵 × {1𝑜}) ≈ 𝐵)
97, 8mpan2 706 . . . 4 (𝐵𝑊 → (𝐵 × {1𝑜}) ≈ 𝐵)
10 ensym 7949 . . . 4 ((𝐵 × {1𝑜}) ≈ 𝐵𝐵 ≈ (𝐵 × {1𝑜}))
11 endom 7926 . . . 4 (𝐵 ≈ (𝐵 × {1𝑜}) → 𝐵 ≼ (𝐵 × {1𝑜}))
129, 10, 113syl 18 . . 3 (𝐵𝑊𝐵 ≼ (𝐵 × {1𝑜}))
13 xp01disj 7521 . . . 4 ((𝐴 × {∅}) ∩ (𝐵 × {1𝑜})) = ∅
14 undom 7992 . . . 4 (((𝐴 ≼ (𝐴 × {∅}) ∧ 𝐵 ≼ (𝐵 × {1𝑜})) ∧ ((𝐴 × {∅}) ∩ (𝐵 × {1𝑜})) = ∅) → (𝐴𝐵) ≼ ((𝐴 × {∅}) ∪ (𝐵 × {1𝑜})))
1513, 14mpan2 706 . . 3 ((𝐴 ≼ (𝐴 × {∅}) ∧ 𝐵 ≼ (𝐵 × {1𝑜})) → (𝐴𝐵) ≼ ((𝐴 × {∅}) ∪ (𝐵 × {1𝑜})))
166, 12, 15syl2an 494 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ≼ ((𝐴 × {∅}) ∪ (𝐵 × {1𝑜})))
17 cdaval 8936 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴 +𝑐 𝐵) = ((𝐴 × {∅}) ∪ (𝐵 × {1𝑜})))
1816, 17breqtrrd 4641 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ≼ (𝐴 +𝑐 𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1480   ∈ wcel 1987  Vcvv 3186   ∪ cun 3553   ∩ cin 3554  ∅c0 3891  {csn 4148   class class class wbr 4613   × cxp 5072  Oncon0 5682  (class class class)co 6604  1𝑜c1o 7498   ≈ cen 7896   ≼ cdom 7897   +𝑐 ccda 8933 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-ord 5685  df-on 5686  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-1o 7505  df-er 7687  df-en 7900  df-dom 7901  df-cda 8934 This theorem is referenced by:  cdadom3  8954  unnum  8966  ficardun2  8969  pwsdompw  8970  unctb  8971  infunabs  8973  infcda  8974  infdif  8975
 Copyright terms: Public domain W3C validator