MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uncf1 Structured version   Visualization version   GIF version

Theorem uncf1 17488
Description: Value of the uncurry functor on an object. (Contributed by Mario Carneiro, 13-Jan-2017.)
Hypotheses
Ref Expression
uncfval.g 𝐹 = (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)
uncfval.c (𝜑𝐷 ∈ Cat)
uncfval.d (𝜑𝐸 ∈ Cat)
uncfval.f (𝜑𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)))
uncf1.a 𝐴 = (Base‘𝐶)
uncf1.b 𝐵 = (Base‘𝐷)
uncf1.x (𝜑𝑋𝐴)
uncf1.y (𝜑𝑌𝐵)
Assertion
Ref Expression
uncf1 (𝜑 → (𝑋(1st𝐹)𝑌) = ((1st ‘((1st𝐺)‘𝑋))‘𝑌))

Proof of Theorem uncf1
StepHypRef Expression
1 uncfval.g . . . . 5 𝐹 = (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)
2 uncfval.c . . . . 5 (𝜑𝐷 ∈ Cat)
3 uncfval.d . . . . 5 (𝜑𝐸 ∈ Cat)
4 uncfval.f . . . . 5 (𝜑𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)))
51, 2, 3, 4uncfval 17486 . . . 4 (𝜑𝐹 = ((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))))
65fveq2d 6676 . . 3 (𝜑 → (1st𝐹) = (1st ‘((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))))
76oveqd 7175 . 2 (𝜑 → (𝑋(1st𝐹)𝑌) = (𝑋(1st ‘((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))))𝑌))
8 df-ov 7161 . . 3 (𝑋(1st ‘((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))))𝑌) = ((1st ‘((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))))‘⟨𝑋, 𝑌⟩)
9 eqid 2823 . . . . 5 (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷)
10 uncf1.a . . . . 5 𝐴 = (Base‘𝐶)
11 uncf1.b . . . . 5 𝐵 = (Base‘𝐷)
129, 10, 11xpcbas 17430 . . . 4 (𝐴 × 𝐵) = (Base‘(𝐶 ×c 𝐷))
13 eqid 2823 . . . . 5 ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)) = ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))
14 eqid 2823 . . . . 5 ((𝐷 FuncCat 𝐸) ×c 𝐷) = ((𝐷 FuncCat 𝐸) ×c 𝐷)
15 funcrcl 17135 . . . . . . . . 9 (𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)) → (𝐶 ∈ Cat ∧ (𝐷 FuncCat 𝐸) ∈ Cat))
164, 15syl 17 . . . . . . . 8 (𝜑 → (𝐶 ∈ Cat ∧ (𝐷 FuncCat 𝐸) ∈ Cat))
1716simpld 497 . . . . . . 7 (𝜑𝐶 ∈ Cat)
18 eqid 2823 . . . . . . 7 (𝐶 1stF 𝐷) = (𝐶 1stF 𝐷)
199, 17, 2, 181stfcl 17449 . . . . . 6 (𝜑 → (𝐶 1stF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐶))
2019, 4cofucl 17160 . . . . 5 (𝜑 → (𝐺func (𝐶 1stF 𝐷)) ∈ ((𝐶 ×c 𝐷) Func (𝐷 FuncCat 𝐸)))
21 eqid 2823 . . . . . 6 (𝐶 2ndF 𝐷) = (𝐶 2ndF 𝐷)
229, 17, 2, 212ndfcl 17450 . . . . 5 (𝜑 → (𝐶 2ndF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐷))
2313, 14, 20, 22prfcl 17455 . . . 4 (𝜑 → ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)) ∈ ((𝐶 ×c 𝐷) Func ((𝐷 FuncCat 𝐸) ×c 𝐷)))
24 eqid 2823 . . . . 5 (𝐷 evalF 𝐸) = (𝐷 evalF 𝐸)
25 eqid 2823 . . . . 5 (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸)
2624, 25, 2, 3evlfcl 17474 . . . 4 (𝜑 → (𝐷 evalF 𝐸) ∈ (((𝐷 FuncCat 𝐸) ×c 𝐷) Func 𝐸))
27 uncf1.x . . . . 5 (𝜑𝑋𝐴)
28 uncf1.y . . . . 5 (𝜑𝑌𝐵)
2927, 28opelxpd 5595 . . . 4 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐴 × 𝐵))
3012, 23, 26, 29cofu1 17156 . . 3 (𝜑 → ((1st ‘((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))))‘⟨𝑋, 𝑌⟩) = ((1st ‘(𝐷 evalF 𝐸))‘((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑋, 𝑌⟩)))
318, 30syl5eq 2870 . 2 (𝜑 → (𝑋(1st ‘((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))))𝑌) = ((1st ‘(𝐷 evalF 𝐸))‘((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑋, 𝑌⟩)))
32 eqid 2823 . . . . . . 7 (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷))
3313, 12, 32, 20, 22, 29prf1 17452 . . . . . 6 (𝜑 → ((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑋, 𝑌⟩) = ⟨((1st ‘(𝐺func (𝐶 1stF 𝐷)))‘⟨𝑋, 𝑌⟩), ((1st ‘(𝐶 2ndF 𝐷))‘⟨𝑋, 𝑌⟩)⟩)
3412, 19, 4, 29cofu1 17156 . . . . . . . 8 (𝜑 → ((1st ‘(𝐺func (𝐶 1stF 𝐷)))‘⟨𝑋, 𝑌⟩) = ((1st𝐺)‘((1st ‘(𝐶 1stF 𝐷))‘⟨𝑋, 𝑌⟩)))
359, 12, 32, 17, 2, 18, 291stf1 17444 . . . . . . . . . 10 (𝜑 → ((1st ‘(𝐶 1stF 𝐷))‘⟨𝑋, 𝑌⟩) = (1st ‘⟨𝑋, 𝑌⟩))
36 op1stg 7703 . . . . . . . . . . 11 ((𝑋𝐴𝑌𝐵) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
3727, 28, 36syl2anc 586 . . . . . . . . . 10 (𝜑 → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
3835, 37eqtrd 2858 . . . . . . . . 9 (𝜑 → ((1st ‘(𝐶 1stF 𝐷))‘⟨𝑋, 𝑌⟩) = 𝑋)
3938fveq2d 6676 . . . . . . . 8 (𝜑 → ((1st𝐺)‘((1st ‘(𝐶 1stF 𝐷))‘⟨𝑋, 𝑌⟩)) = ((1st𝐺)‘𝑋))
4034, 39eqtrd 2858 . . . . . . 7 (𝜑 → ((1st ‘(𝐺func (𝐶 1stF 𝐷)))‘⟨𝑋, 𝑌⟩) = ((1st𝐺)‘𝑋))
419, 12, 32, 17, 2, 21, 292ndf1 17447 . . . . . . . 8 (𝜑 → ((1st ‘(𝐶 2ndF 𝐷))‘⟨𝑋, 𝑌⟩) = (2nd ‘⟨𝑋, 𝑌⟩))
42 op2ndg 7704 . . . . . . . . 9 ((𝑋𝐴𝑌𝐵) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
4327, 28, 42syl2anc 586 . . . . . . . 8 (𝜑 → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
4441, 43eqtrd 2858 . . . . . . 7 (𝜑 → ((1st ‘(𝐶 2ndF 𝐷))‘⟨𝑋, 𝑌⟩) = 𝑌)
4540, 44opeq12d 4813 . . . . . 6 (𝜑 → ⟨((1st ‘(𝐺func (𝐶 1stF 𝐷)))‘⟨𝑋, 𝑌⟩), ((1st ‘(𝐶 2ndF 𝐷))‘⟨𝑋, 𝑌⟩)⟩ = ⟨((1st𝐺)‘𝑋), 𝑌⟩)
4633, 45eqtrd 2858 . . . . 5 (𝜑 → ((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑋, 𝑌⟩) = ⟨((1st𝐺)‘𝑋), 𝑌⟩)
4746fveq2d 6676 . . . 4 (𝜑 → ((1st ‘(𝐷 evalF 𝐸))‘((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑋, 𝑌⟩)) = ((1st ‘(𝐷 evalF 𝐸))‘⟨((1st𝐺)‘𝑋), 𝑌⟩))
48 df-ov 7161 . . . 4 (((1st𝐺)‘𝑋)(1st ‘(𝐷 evalF 𝐸))𝑌) = ((1st ‘(𝐷 evalF 𝐸))‘⟨((1st𝐺)‘𝑋), 𝑌⟩)
4947, 48syl6eqr 2876 . . 3 (𝜑 → ((1st ‘(𝐷 evalF 𝐸))‘((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑋, 𝑌⟩)) = (((1st𝐺)‘𝑋)(1st ‘(𝐷 evalF 𝐸))𝑌))
5025fucbas 17232 . . . . . 6 (𝐷 Func 𝐸) = (Base‘(𝐷 FuncCat 𝐸))
51 relfunc 17134 . . . . . . 7 Rel (𝐶 Func (𝐷 FuncCat 𝐸))
52 1st2ndbr 7743 . . . . . . 7 ((Rel (𝐶 Func (𝐷 FuncCat 𝐸)) ∧ 𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸))) → (1st𝐺)(𝐶 Func (𝐷 FuncCat 𝐸))(2nd𝐺))
5351, 4, 52sylancr 589 . . . . . 6 (𝜑 → (1st𝐺)(𝐶 Func (𝐷 FuncCat 𝐸))(2nd𝐺))
5410, 50, 53funcf1 17138 . . . . 5 (𝜑 → (1st𝐺):𝐴⟶(𝐷 Func 𝐸))
5554, 27ffvelrnd 6854 . . . 4 (𝜑 → ((1st𝐺)‘𝑋) ∈ (𝐷 Func 𝐸))
5624, 2, 3, 11, 55, 28evlf1 17472 . . 3 (𝜑 → (((1st𝐺)‘𝑋)(1st ‘(𝐷 evalF 𝐸))𝑌) = ((1st ‘((1st𝐺)‘𝑋))‘𝑌))
5749, 56eqtrd 2858 . 2 (𝜑 → ((1st ‘(𝐷 evalF 𝐸))‘((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑋, 𝑌⟩)) = ((1st ‘((1st𝐺)‘𝑋))‘𝑌))
587, 31, 573eqtrd 2862 1 (𝜑 → (𝑋(1st𝐹)𝑌) = ((1st ‘((1st𝐺)‘𝑋))‘𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  cop 4575   class class class wbr 5068   × cxp 5555  Rel wrel 5562  cfv 6357  (class class class)co 7158  1st c1st 7689  2nd c2nd 7690  ⟨“cs3 14206  Basecbs 16485  Hom chom 16578  Catccat 16937   Func cfunc 17126  func ccofu 17128   FuncCat cfuc 17214   ×c cxpc 17420   1stF c1stf 17421   2ndF c2ndf 17422   ⟨,⟩F cprf 17423   evalF cevlf 17461   uncurryF cuncf 17463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865  df-concat 13925  df-s1 13952  df-s2 14212  df-s3 14213  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-hom 16591  df-cco 16592  df-cat 16941  df-cid 16942  df-func 17130  df-cofu 17132  df-nat 17215  df-fuc 17216  df-xpc 17424  df-1stf 17425  df-2ndf 17426  df-prf 17427  df-evlf 17465  df-uncf 17467
This theorem is referenced by:  curfuncf  17490  uncfcurf  17491
  Copyright terms: Public domain W3C validator