MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uncfval Structured version   Visualization version   GIF version

Theorem uncfval 16795
Description: Value of the uncurry functor, which is the reverse of the curry functor, taking 𝐺:𝐶⟶(𝐷𝐸) to uncurryF (𝐺):𝐶 × 𝐷𝐸. (Contributed by Mario Carneiro, 13-Jan-2017.)
Hypotheses
Ref Expression
uncfval.g 𝐹 = (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)
uncfval.c (𝜑𝐷 ∈ Cat)
uncfval.d (𝜑𝐸 ∈ Cat)
uncfval.f (𝜑𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)))
Assertion
Ref Expression
uncfval (𝜑𝐹 = ((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))))

Proof of Theorem uncfval
Dummy variables 𝑓 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uncfval.g . 2 𝐹 = (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)
2 df-uncf 16776 . . . 4 uncurryF = (𝑐 ∈ V, 𝑓 ∈ V ↦ (((𝑐‘1) evalF (𝑐‘2)) ∘func ((𝑓func ((𝑐‘0) 1stF (𝑐‘1))) ⟨,⟩F ((𝑐‘0) 2ndF (𝑐‘1)))))
32a1i 11 . . 3 (𝜑 → uncurryF = (𝑐 ∈ V, 𝑓 ∈ V ↦ (((𝑐‘1) evalF (𝑐‘2)) ∘func ((𝑓func ((𝑐‘0) 1stF (𝑐‘1))) ⟨,⟩F ((𝑐‘0) 2ndF (𝑐‘1))))))
4 simprl 793 . . . . . . 7 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → 𝑐 = ⟨“𝐶𝐷𝐸”⟩)
54fveq1d 6150 . . . . . 6 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → (𝑐‘1) = (⟨“𝐶𝐷𝐸”⟩‘1))
6 uncfval.c . . . . . . . 8 (𝜑𝐷 ∈ Cat)
7 s3fv1 13573 . . . . . . . 8 (𝐷 ∈ Cat → (⟨“𝐶𝐷𝐸”⟩‘1) = 𝐷)
86, 7syl 17 . . . . . . 7 (𝜑 → (⟨“𝐶𝐷𝐸”⟩‘1) = 𝐷)
98adantr 481 . . . . . 6 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → (⟨“𝐶𝐷𝐸”⟩‘1) = 𝐷)
105, 9eqtrd 2655 . . . . 5 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → (𝑐‘1) = 𝐷)
114fveq1d 6150 . . . . . 6 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → (𝑐‘2) = (⟨“𝐶𝐷𝐸”⟩‘2))
12 uncfval.d . . . . . . . 8 (𝜑𝐸 ∈ Cat)
13 s3fv2 13574 . . . . . . . 8 (𝐸 ∈ Cat → (⟨“𝐶𝐷𝐸”⟩‘2) = 𝐸)
1412, 13syl 17 . . . . . . 7 (𝜑 → (⟨“𝐶𝐷𝐸”⟩‘2) = 𝐸)
1514adantr 481 . . . . . 6 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → (⟨“𝐶𝐷𝐸”⟩‘2) = 𝐸)
1611, 15eqtrd 2655 . . . . 5 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → (𝑐‘2) = 𝐸)
1710, 16oveq12d 6622 . . . 4 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → ((𝑐‘1) evalF (𝑐‘2)) = (𝐷 evalF 𝐸))
18 simprr 795 . . . . . 6 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → 𝑓 = 𝐺)
194fveq1d 6150 . . . . . . . 8 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → (𝑐‘0) = (⟨“𝐶𝐷𝐸”⟩‘0))
20 uncfval.f . . . . . . . . . . . 12 (𝜑𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)))
21 funcrcl 16444 . . . . . . . . . . . 12 (𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)) → (𝐶 ∈ Cat ∧ (𝐷 FuncCat 𝐸) ∈ Cat))
2220, 21syl 17 . . . . . . . . . . 11 (𝜑 → (𝐶 ∈ Cat ∧ (𝐷 FuncCat 𝐸) ∈ Cat))
2322simpld 475 . . . . . . . . . 10 (𝜑𝐶 ∈ Cat)
24 s3fv0 13572 . . . . . . . . . 10 (𝐶 ∈ Cat → (⟨“𝐶𝐷𝐸”⟩‘0) = 𝐶)
2523, 24syl 17 . . . . . . . . 9 (𝜑 → (⟨“𝐶𝐷𝐸”⟩‘0) = 𝐶)
2625adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → (⟨“𝐶𝐷𝐸”⟩‘0) = 𝐶)
2719, 26eqtrd 2655 . . . . . . 7 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → (𝑐‘0) = 𝐶)
2827, 10oveq12d 6622 . . . . . 6 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → ((𝑐‘0) 1stF (𝑐‘1)) = (𝐶 1stF 𝐷))
2918, 28oveq12d 6622 . . . . 5 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → (𝑓func ((𝑐‘0) 1stF (𝑐‘1))) = (𝐺func (𝐶 1stF 𝐷)))
3027, 10oveq12d 6622 . . . . 5 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → ((𝑐‘0) 2ndF (𝑐‘1)) = (𝐶 2ndF 𝐷))
3129, 30oveq12d 6622 . . . 4 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → ((𝑓func ((𝑐‘0) 1stF (𝑐‘1))) ⟨,⟩F ((𝑐‘0) 2ndF (𝑐‘1))) = ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))
3217, 31oveq12d 6622 . . 3 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → (((𝑐‘1) evalF (𝑐‘2)) ∘func ((𝑓func ((𝑐‘0) 1stF (𝑐‘1))) ⟨,⟩F ((𝑐‘0) 2ndF (𝑐‘1)))) = ((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))))
33 s3cli 13562 . . . 4 ⟨“𝐶𝐷𝐸”⟩ ∈ Word V
34 elex 3198 . . . 4 (⟨“𝐶𝐷𝐸”⟩ ∈ Word V → ⟨“𝐶𝐷𝐸”⟩ ∈ V)
3533, 34mp1i 13 . . 3 (𝜑 → ⟨“𝐶𝐷𝐸”⟩ ∈ V)
36 elex 3198 . . . 4 (𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)) → 𝐺 ∈ V)
3720, 36syl 17 . . 3 (𝜑𝐺 ∈ V)
38 ovex 6632 . . . 4 ((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))) ∈ V
3938a1i 11 . . 3 (𝜑 → ((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))) ∈ V)
403, 32, 35, 37, 39ovmpt2d 6741 . 2 (𝜑 → (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺) = ((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))))
411, 40syl5eq 2667 1 (𝜑𝐹 = ((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  Vcvv 3186  cfv 5847  (class class class)co 6604  cmpt2 6606  0cc0 9880  1c1 9881  2c2 11014  Word cword 13230  ⟨“cs3 13524  Catccat 16246   Func cfunc 16435  func ccofu 16437   FuncCat cfuc 16523   1stF c1stf 16730   2ndF c2ndf 16731   ⟨,⟩F cprf 16732   evalF cevlf 16770   uncurryF cuncf 16772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-fzo 12407  df-hash 13058  df-word 13238  df-concat 13240  df-s1 13241  df-s2 13530  df-s3 13531  df-func 16439  df-uncf 16776
This theorem is referenced by:  uncfcl  16796  uncf1  16797  uncf2  16798
  Copyright terms: Public domain W3C validator