MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uncld Structured version   Visualization version   GIF version

Theorem uncld 20755
Description: The union of two closed sets is closed. Equivalent to Theorem 6.1(3) of [Munkres] p. 93. (Contributed by NM, 5-Oct-2006.)
Assertion
Ref Expression
uncld ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴𝐵) ∈ (Clsd‘𝐽))

Proof of Theorem uncld
StepHypRef Expression
1 difundi 3855 . . 3 ( 𝐽 ∖ (𝐴𝐵)) = (( 𝐽𝐴) ∩ ( 𝐽𝐵))
2 cldrcl 20740 . . . . 5 (𝐴 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
32adantr 481 . . . 4 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → 𝐽 ∈ Top)
4 eqid 2621 . . . . . 6 𝐽 = 𝐽
54cldopn 20745 . . . . 5 (𝐴 ∈ (Clsd‘𝐽) → ( 𝐽𝐴) ∈ 𝐽)
65adantr 481 . . . 4 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → ( 𝐽𝐴) ∈ 𝐽)
74cldopn 20745 . . . . 5 (𝐵 ∈ (Clsd‘𝐽) → ( 𝐽𝐵) ∈ 𝐽)
87adantl 482 . . . 4 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → ( 𝐽𝐵) ∈ 𝐽)
9 inopn 20629 . . . 4 ((𝐽 ∈ Top ∧ ( 𝐽𝐴) ∈ 𝐽 ∧ ( 𝐽𝐵) ∈ 𝐽) → (( 𝐽𝐴) ∩ ( 𝐽𝐵)) ∈ 𝐽)
103, 6, 8, 9syl3anc 1323 . . 3 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (( 𝐽𝐴) ∩ ( 𝐽𝐵)) ∈ 𝐽)
111, 10syl5eqel 2702 . 2 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → ( 𝐽 ∖ (𝐴𝐵)) ∈ 𝐽)
124cldss 20743 . . . . 5 (𝐴 ∈ (Clsd‘𝐽) → 𝐴 𝐽)
134cldss 20743 . . . . 5 (𝐵 ∈ (Clsd‘𝐽) → 𝐵 𝐽)
1412, 13anim12i 589 . . . 4 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴 𝐽𝐵 𝐽))
15 unss 3765 . . . 4 ((𝐴 𝐽𝐵 𝐽) ↔ (𝐴𝐵) ⊆ 𝐽)
1614, 15sylib 208 . . 3 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴𝐵) ⊆ 𝐽)
174iscld2 20742 . . 3 ((𝐽 ∈ Top ∧ (𝐴𝐵) ⊆ 𝐽) → ((𝐴𝐵) ∈ (Clsd‘𝐽) ↔ ( 𝐽 ∖ (𝐴𝐵)) ∈ 𝐽))
183, 16, 17syl2anc 692 . 2 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → ((𝐴𝐵) ∈ (Clsd‘𝐽) ↔ ( 𝐽 ∖ (𝐴𝐵)) ∈ 𝐽))
1911, 18mpbird 247 1 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴𝐵) ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wcel 1987  cdif 3552  cun 3553  cin 3554  wss 3555   cuni 4402  cfv 5847  Topctop 20617  Clsdccld 20730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-iota 5810  df-fun 5849  df-fn 5850  df-fv 5855  df-top 20621  df-cld 20733
This theorem is referenced by:  iscldtop  20809  paste  21008  lpcls  21078  dvasin  33128  dvacos  33129  dvreasin  33130  dvreacos  33131
  Copyright terms: Public domain W3C validator