MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unconn Structured version   Visualization version   GIF version

Theorem unconn 21213
Description: The union of two connected overlapping subspaces is connected. (Contributed by FL, 29-May-2014.) (Proof shortened by Mario Carneiro, 11-Jun-2014.)
Assertion
Ref Expression
unconn ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐴𝐵) ≠ ∅) → (((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn) → (𝐽t (𝐴𝐵)) ∈ Conn))

Proof of Theorem unconn
Dummy variables 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 3923 . . 3 ((𝐴𝐵) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐴𝐵))
2 uniiun 4564 . . . . . . . . 9 {𝐴, 𝐵} = 𝑘 ∈ {𝐴, 𝐵}𝑘
3 simpl1 1062 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → 𝐽 ∈ (TopOn‘𝑋))
4 toponmax 20711 . . . . . . . . . . . 12 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
53, 4syl 17 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → 𝑋𝐽)
6 simpl2l 1112 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → 𝐴𝑋)
75, 6ssexd 4796 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → 𝐴 ∈ V)
8 simpl2r 1113 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → 𝐵𝑋)
95, 8ssexd 4796 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → 𝐵 ∈ V)
10 uniprg 4441 . . . . . . . . . 10 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} = (𝐴𝐵))
117, 9, 10syl2anc 692 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → {𝐴, 𝐵} = (𝐴𝐵))
122, 11syl5eqr 2668 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → 𝑘 ∈ {𝐴, 𝐵}𝑘 = (𝐴𝐵))
1312oveq2d 6651 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → (𝐽t 𝑘 ∈ {𝐴, 𝐵}𝑘) = (𝐽t (𝐴𝐵)))
14 vex 3198 . . . . . . . . . 10 𝑘 ∈ V
1514elpr 4189 . . . . . . . . 9 (𝑘 ∈ {𝐴, 𝐵} ↔ (𝑘 = 𝐴𝑘 = 𝐵))
16 simpl2 1063 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → (𝐴𝑋𝐵𝑋))
17 sseq1 3618 . . . . . . . . . . . 12 (𝑘 = 𝐴 → (𝑘𝑋𝐴𝑋))
1817biimprd 238 . . . . . . . . . . 11 (𝑘 = 𝐴 → (𝐴𝑋𝑘𝑋))
19 sseq1 3618 . . . . . . . . . . . 12 (𝑘 = 𝐵 → (𝑘𝑋𝐵𝑋))
2019biimprd 238 . . . . . . . . . . 11 (𝑘 = 𝐵 → (𝐵𝑋𝑘𝑋))
2118, 20jaoa 532 . . . . . . . . . 10 ((𝑘 = 𝐴𝑘 = 𝐵) → ((𝐴𝑋𝐵𝑋) → 𝑘𝑋))
2216, 21mpan9 486 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) ∧ (𝑘 = 𝐴𝑘 = 𝐵)) → 𝑘𝑋)
2315, 22sylan2b 492 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) ∧ 𝑘 ∈ {𝐴, 𝐵}) → 𝑘𝑋)
24 simpl3 1064 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → 𝑥 ∈ (𝐴𝐵))
25 elin 3788 . . . . . . . . . . 11 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
2624, 25sylib 208 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → (𝑥𝐴𝑥𝐵))
27 eleq2 2688 . . . . . . . . . . . 12 (𝑘 = 𝐴 → (𝑥𝑘𝑥𝐴))
2827biimprd 238 . . . . . . . . . . 11 (𝑘 = 𝐴 → (𝑥𝐴𝑥𝑘))
29 eleq2 2688 . . . . . . . . . . . 12 (𝑘 = 𝐵 → (𝑥𝑘𝑥𝐵))
3029biimprd 238 . . . . . . . . . . 11 (𝑘 = 𝐵 → (𝑥𝐵𝑥𝑘))
3128, 30jaoa 532 . . . . . . . . . 10 ((𝑘 = 𝐴𝑘 = 𝐵) → ((𝑥𝐴𝑥𝐵) → 𝑥𝑘))
3226, 31mpan9 486 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) ∧ (𝑘 = 𝐴𝑘 = 𝐵)) → 𝑥𝑘)
3315, 32sylan2b 492 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) ∧ 𝑘 ∈ {𝐴, 𝐵}) → 𝑥𝑘)
34 simpr 477 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn))
35 oveq2 6643 . . . . . . . . . . . . 13 (𝑘 = 𝐴 → (𝐽t 𝑘) = (𝐽t 𝐴))
3635eleq1d 2684 . . . . . . . . . . . 12 (𝑘 = 𝐴 → ((𝐽t 𝑘) ∈ Conn ↔ (𝐽t 𝐴) ∈ Conn))
3736biimprd 238 . . . . . . . . . . 11 (𝑘 = 𝐴 → ((𝐽t 𝐴) ∈ Conn → (𝐽t 𝑘) ∈ Conn))
38 oveq2 6643 . . . . . . . . . . . . 13 (𝑘 = 𝐵 → (𝐽t 𝑘) = (𝐽t 𝐵))
3938eleq1d 2684 . . . . . . . . . . . 12 (𝑘 = 𝐵 → ((𝐽t 𝑘) ∈ Conn ↔ (𝐽t 𝐵) ∈ Conn))
4039biimprd 238 . . . . . . . . . . 11 (𝑘 = 𝐵 → ((𝐽t 𝐵) ∈ Conn → (𝐽t 𝑘) ∈ Conn))
4137, 40jaoa 532 . . . . . . . . . 10 ((𝑘 = 𝐴𝑘 = 𝐵) → (((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn) → (𝐽t 𝑘) ∈ Conn))
4234, 41mpan9 486 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) ∧ (𝑘 = 𝐴𝑘 = 𝐵)) → (𝐽t 𝑘) ∈ Conn)
4315, 42sylan2b 492 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) ∧ 𝑘 ∈ {𝐴, 𝐵}) → (𝐽t 𝑘) ∈ Conn)
443, 23, 33, 43iunconn 21212 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → (𝐽t 𝑘 ∈ {𝐴, 𝐵}𝑘) ∈ Conn)
4513, 44eqeltrrd 2700 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → (𝐽t (𝐴𝐵)) ∈ Conn)
4645ex 450 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) → (((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn) → (𝐽t (𝐴𝐵)) ∈ Conn))
47463expia 1265 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝑥 ∈ (𝐴𝐵) → (((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn) → (𝐽t (𝐴𝐵)) ∈ Conn)))
4847exlimdv 1859 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (∃𝑥 𝑥 ∈ (𝐴𝐵) → (((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn) → (𝐽t (𝐴𝐵)) ∈ Conn)))
491, 48syl5bi 232 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐴𝐵) ≠ ∅ → (((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn) → (𝐽t (𝐴𝐵)) ∈ Conn)))
50493impia 1259 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐴𝐵) ≠ ∅) → (((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn) → (𝐽t (𝐴𝐵)) ∈ Conn))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384  w3a 1036   = wceq 1481  wex 1702  wcel 1988  wne 2791  Vcvv 3195  cun 3565  cin 3566  wss 3567  c0 3907  {cpr 4170   cuni 4427   ciun 4511  cfv 5876  (class class class)co 6635  t crest 16062  TopOnctopon 20696  Conncconn 21195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-oadd 7549  df-er 7727  df-en 7941  df-fin 7944  df-fi 8302  df-rest 16064  df-topgen 16085  df-top 20680  df-topon 20697  df-bases 20731  df-cld 20804  df-conn 21196
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator