MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undi Structured version   Visualization version   GIF version

Theorem undi 4017
Description: Distributive law for union over intersection. Exercise 11 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
undi (𝐴 ∪ (𝐵𝐶)) = ((𝐴𝐵) ∩ (𝐴𝐶))

Proof of Theorem undi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 3939 . . . 4 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵𝑥𝐶))
21orbi2i 542 . . 3 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ (𝑥𝐴 ∨ (𝑥𝐵𝑥𝐶)))
3 ordi 944 . . 3 ((𝑥𝐴 ∨ (𝑥𝐵𝑥𝐶)) ↔ ((𝑥𝐴𝑥𝐵) ∧ (𝑥𝐴𝑥𝐶)))
4 elin 3939 . . . 4 (𝑥 ∈ ((𝐴𝐵) ∩ (𝐴𝐶)) ↔ (𝑥 ∈ (𝐴𝐵) ∧ 𝑥 ∈ (𝐴𝐶)))
5 elun 3896 . . . . 5 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
6 elun 3896 . . . . 5 (𝑥 ∈ (𝐴𝐶) ↔ (𝑥𝐴𝑥𝐶))
75, 6anbi12i 735 . . . 4 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑥 ∈ (𝐴𝐶)) ↔ ((𝑥𝐴𝑥𝐵) ∧ (𝑥𝐴𝑥𝐶)))
84, 7bitr2i 265 . . 3 (((𝑥𝐴𝑥𝐵) ∧ (𝑥𝐴𝑥𝐶)) ↔ 𝑥 ∈ ((𝐴𝐵) ∩ (𝐴𝐶)))
92, 3, 83bitri 286 . 2 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ 𝑥 ∈ ((𝐴𝐵) ∩ (𝐴𝐶)))
109uneqri 3898 1 (𝐴 ∪ (𝐵𝐶)) = ((𝐴𝐵) ∩ (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wo 382  wa 383   = wceq 1632  wcel 2139  cun 3713  cin 3714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-v 3342  df-un 3720  df-in 3722
This theorem is referenced by:  undir  4019  dfif4  4245  dfif5  4246
  Copyright terms: Public domain W3C validator