 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  undir Structured version   Visualization version   GIF version

Theorem undir 3834
 Description: Distributive law for union over intersection. Theorem 29 of [Suppes] p. 27. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
undir ((𝐴𝐵) ∪ 𝐶) = ((𝐴𝐶) ∩ (𝐵𝐶))

Proof of Theorem undir
StepHypRef Expression
1 undi 3832 . 2 (𝐶 ∪ (𝐴𝐵)) = ((𝐶𝐴) ∩ (𝐶𝐵))
2 uncom 3718 . 2 ((𝐴𝐵) ∪ 𝐶) = (𝐶 ∪ (𝐴𝐵))
3 uncom 3718 . . 3 (𝐴𝐶) = (𝐶𝐴)
4 uncom 3718 . . 3 (𝐵𝐶) = (𝐶𝐵)
53, 4ineq12i 3773 . 2 ((𝐴𝐶) ∩ (𝐵𝐶)) = ((𝐶𝐴) ∩ (𝐶𝐵))
61, 2, 53eqtr4i 2641 1 ((𝐴𝐵) ∪ 𝐶) = ((𝐴𝐶) ∩ (𝐵𝐶))
 Colors of variables: wff setvar class Syntax hints:   = wceq 1474   ∪ cun 3537   ∩ cin 3538 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589 This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-v 3174  df-un 3544  df-in 3546 This theorem is referenced by:  undif1  3994  dfif4  4050  dfif5  4051  bwth  20965
 Copyright terms: Public domain W3C validator