![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > undisj2 | Structured version Visualization version GIF version |
Description: The union of disjoint classes is disjoint. (Contributed by NM, 13-Sep-2004.) |
Ref | Expression |
---|---|
undisj2 | ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ (𝐴 ∩ 𝐶) = ∅) ↔ (𝐴 ∩ (𝐵 ∪ 𝐶)) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | un00 4154 | . 2 ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ (𝐴 ∩ 𝐶) = ∅) ↔ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶)) = ∅) | |
2 | indi 4016 | . . 3 ⊢ (𝐴 ∩ (𝐵 ∪ 𝐶)) = ((𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶)) | |
3 | 2 | eqeq1i 2765 | . 2 ⊢ ((𝐴 ∩ (𝐵 ∪ 𝐶)) = ∅ ↔ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶)) = ∅) |
4 | 1, 3 | bitr4i 267 | 1 ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ (𝐴 ∩ 𝐶) = ∅) ↔ (𝐴 ∩ (𝐵 ∪ 𝐶)) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 = wceq 1632 ∪ cun 3713 ∩ cin 3714 ∅c0 4058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 |
This theorem is referenced by: disjtp2 4396 f1oun2prg 13862 cnfldfun 19960 |
Copyright terms: Public domain | W3C validator |