Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  undmrnresiss Structured version   Visualization version   GIF version

Theorem undmrnresiss 36826
Description: Two ways of saying the identity relation restricted to the union of the domain and range of a relation is a subset of a relation. Generalization of reflexg 36827. (Contributed by RP, 26-Sep-2020.)
Assertion
Ref Expression
undmrnresiss (( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ 𝐵 ↔ ∀𝑥𝑦(𝑥𝐴𝑦 → (𝑥𝐵𝑥𝑦𝐵𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem undmrnresiss
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 resundi 5221 . . 3 ( I ↾ (dom 𝐴 ∪ ran 𝐴)) = (( I ↾ dom 𝐴) ∪ ( I ↾ ran 𝐴))
21sseq1i 3496 . 2 (( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ 𝐵 ↔ (( I ↾ dom 𝐴) ∪ ( I ↾ ran 𝐴)) ⊆ 𝐵)
3 unss 3653 . 2 ((( I ↾ dom 𝐴) ⊆ 𝐵 ∧ ( I ↾ ran 𝐴) ⊆ 𝐵) ↔ (( I ↾ dom 𝐴) ∪ ( I ↾ ran 𝐴)) ⊆ 𝐵)
4 relres 5237 . . . . . 6 Rel ( I ↾ dom 𝐴)
5 ssrel 5024 . . . . . 6 (Rel ( I ↾ dom 𝐴) → (( I ↾ dom 𝐴) ⊆ 𝐵 ↔ ∀𝑥𝑧(⟨𝑥, 𝑧⟩ ∈ ( I ↾ dom 𝐴) → ⟨𝑥, 𝑧⟩ ∈ 𝐵)))
64, 5ax-mp 5 . . . . 5 (( I ↾ dom 𝐴) ⊆ 𝐵 ↔ ∀𝑥𝑧(⟨𝑥, 𝑧⟩ ∈ ( I ↾ dom 𝐴) → ⟨𝑥, 𝑧⟩ ∈ 𝐵))
7 df-br 4482 . . . . . . . . . 10 (𝑥 I 𝑧 ↔ ⟨𝑥, 𝑧⟩ ∈ I )
8 vex 3080 . . . . . . . . . . 11 𝑧 ∈ V
98ideq 5088 . . . . . . . . . 10 (𝑥 I 𝑧𝑥 = 𝑧)
107, 9bitr3i 264 . . . . . . . . 9 (⟨𝑥, 𝑧⟩ ∈ I ↔ 𝑥 = 𝑧)
11 vex 3080 . . . . . . . . . 10 𝑥 ∈ V
1211eldm 5134 . . . . . . . . 9 (𝑥 ∈ dom 𝐴 ↔ ∃𝑦 𝑥𝐴𝑦)
1310, 12anbi12i 728 . . . . . . . 8 ((⟨𝑥, 𝑧⟩ ∈ I ∧ 𝑥 ∈ dom 𝐴) ↔ (𝑥 = 𝑧 ∧ ∃𝑦 𝑥𝐴𝑦))
148opelres 5213 . . . . . . . 8 (⟨𝑥, 𝑧⟩ ∈ ( I ↾ dom 𝐴) ↔ (⟨𝑥, 𝑧⟩ ∈ I ∧ 𝑥 ∈ dom 𝐴))
15 19.42v 1868 . . . . . . . 8 (∃𝑦(𝑥 = 𝑧𝑥𝐴𝑦) ↔ (𝑥 = 𝑧 ∧ ∃𝑦 𝑥𝐴𝑦))
1613, 14, 153bitr4i 290 . . . . . . 7 (⟨𝑥, 𝑧⟩ ∈ ( I ↾ dom 𝐴) ↔ ∃𝑦(𝑥 = 𝑧𝑥𝐴𝑦))
17 df-br 4482 . . . . . . . 8 (𝑥𝐵𝑧 ↔ ⟨𝑥, 𝑧⟩ ∈ 𝐵)
1817bicomi 212 . . . . . . 7 (⟨𝑥, 𝑧⟩ ∈ 𝐵𝑥𝐵𝑧)
1916, 18imbi12i 338 . . . . . 6 ((⟨𝑥, 𝑧⟩ ∈ ( I ↾ dom 𝐴) → ⟨𝑥, 𝑧⟩ ∈ 𝐵) ↔ (∃𝑦(𝑥 = 𝑧𝑥𝐴𝑦) → 𝑥𝐵𝑧))
20192albii 1723 . . . . 5 (∀𝑥𝑧(⟨𝑥, 𝑧⟩ ∈ ( I ↾ dom 𝐴) → ⟨𝑥, 𝑧⟩ ∈ 𝐵) ↔ ∀𝑥𝑧(∃𝑦(𝑥 = 𝑧𝑥𝐴𝑦) → 𝑥𝐵𝑧))
21 19.23v 1852 . . . . . . . 8 (∀𝑦((𝑥 = 𝑧𝑥𝐴𝑦) → 𝑥𝐵𝑧) ↔ (∃𝑦(𝑥 = 𝑧𝑥𝐴𝑦) → 𝑥𝐵𝑧))
2221bicomi 212 . . . . . . 7 ((∃𝑦(𝑥 = 𝑧𝑥𝐴𝑦) → 𝑥𝐵𝑧) ↔ ∀𝑦((𝑥 = 𝑧𝑥𝐴𝑦) → 𝑥𝐵𝑧))
23222albii 1723 . . . . . 6 (∀𝑥𝑧(∃𝑦(𝑥 = 𝑧𝑥𝐴𝑦) → 𝑥𝐵𝑧) ↔ ∀𝑥𝑧𝑦((𝑥 = 𝑧𝑥𝐴𝑦) → 𝑥𝐵𝑧))
24 alcom 1974 . . . . . . . 8 (∀𝑧𝑦((𝑥 = 𝑧𝑥𝐴𝑦) → 𝑥𝐵𝑧) ↔ ∀𝑦𝑧((𝑥 = 𝑧𝑥𝐴𝑦) → 𝑥𝐵𝑧))
25 ancomst 466 . . . . . . . . . . . 12 (((𝑥 = 𝑧𝑥𝐴𝑦) → 𝑥𝐵𝑧) ↔ ((𝑥𝐴𝑦𝑥 = 𝑧) → 𝑥𝐵𝑧))
26 impexp 460 . . . . . . . . . . . 12 (((𝑥𝐴𝑦𝑥 = 𝑧) → 𝑥𝐵𝑧) ↔ (𝑥𝐴𝑦 → (𝑥 = 𝑧𝑥𝐵𝑧)))
2725, 26bitri 262 . . . . . . . . . . 11 (((𝑥 = 𝑧𝑥𝐴𝑦) → 𝑥𝐵𝑧) ↔ (𝑥𝐴𝑦 → (𝑥 = 𝑧𝑥𝐵𝑧)))
2827albii 1722 . . . . . . . . . 10 (∀𝑧((𝑥 = 𝑧𝑥𝐴𝑦) → 𝑥𝐵𝑧) ↔ ∀𝑧(𝑥𝐴𝑦 → (𝑥 = 𝑧𝑥𝐵𝑧)))
29 19.21v 1821 . . . . . . . . . 10 (∀𝑧(𝑥𝐴𝑦 → (𝑥 = 𝑧𝑥𝐵𝑧)) ↔ (𝑥𝐴𝑦 → ∀𝑧(𝑥 = 𝑧𝑥𝐵𝑧)))
30 equcom 1895 . . . . . . . . . . . . . 14 (𝑥 = 𝑧𝑧 = 𝑥)
3130imbi1i 337 . . . . . . . . . . . . 13 ((𝑥 = 𝑧𝑥𝐵𝑧) ↔ (𝑧 = 𝑥𝑥𝐵𝑧))
3231albii 1722 . . . . . . . . . . . 12 (∀𝑧(𝑥 = 𝑧𝑥𝐵𝑧) ↔ ∀𝑧(𝑧 = 𝑥𝑥𝐵𝑧))
33 breq2 4485 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → (𝑥𝐵𝑧𝑥𝐵𝑥))
3433equsalvw 1881 . . . . . . . . . . . 12 (∀𝑧(𝑧 = 𝑥𝑥𝐵𝑧) ↔ 𝑥𝐵𝑥)
3532, 34bitri 262 . . . . . . . . . . 11 (∀𝑧(𝑥 = 𝑧𝑥𝐵𝑧) ↔ 𝑥𝐵𝑥)
3635imbi2i 324 . . . . . . . . . 10 ((𝑥𝐴𝑦 → ∀𝑧(𝑥 = 𝑧𝑥𝐵𝑧)) ↔ (𝑥𝐴𝑦𝑥𝐵𝑥))
3728, 29, 363bitri 284 . . . . . . . . 9 (∀𝑧((𝑥 = 𝑧𝑥𝐴𝑦) → 𝑥𝐵𝑧) ↔ (𝑥𝐴𝑦𝑥𝐵𝑥))
3837albii 1722 . . . . . . . 8 (∀𝑦𝑧((𝑥 = 𝑧𝑥𝐴𝑦) → 𝑥𝐵𝑧) ↔ ∀𝑦(𝑥𝐴𝑦𝑥𝐵𝑥))
3924, 38bitri 262 . . . . . . 7 (∀𝑧𝑦((𝑥 = 𝑧𝑥𝐴𝑦) → 𝑥𝐵𝑧) ↔ ∀𝑦(𝑥𝐴𝑦𝑥𝐵𝑥))
4039albii 1722 . . . . . 6 (∀𝑥𝑧𝑦((𝑥 = 𝑧𝑥𝐴𝑦) → 𝑥𝐵𝑧) ↔ ∀𝑥𝑦(𝑥𝐴𝑦𝑥𝐵𝑥))
4123, 40bitri 262 . . . . 5 (∀𝑥𝑧(∃𝑦(𝑥 = 𝑧𝑥𝐴𝑦) → 𝑥𝐵𝑧) ↔ ∀𝑥𝑦(𝑥𝐴𝑦𝑥𝐵𝑥))
426, 20, 413bitri 284 . . . 4 (( I ↾ dom 𝐴) ⊆ 𝐵 ↔ ∀𝑥𝑦(𝑥𝐴𝑦𝑥𝐵𝑥))
43 relres 5237 . . . . . 6 Rel ( I ↾ ran 𝐴)
44 ssrel 5024 . . . . . 6 (Rel ( I ↾ ran 𝐴) → (( I ↾ ran 𝐴) ⊆ 𝐵 ↔ ∀𝑦𝑧(⟨𝑦, 𝑧⟩ ∈ ( I ↾ ran 𝐴) → ⟨𝑦, 𝑧⟩ ∈ 𝐵)))
4543, 44ax-mp 5 . . . . 5 (( I ↾ ran 𝐴) ⊆ 𝐵 ↔ ∀𝑦𝑧(⟨𝑦, 𝑧⟩ ∈ ( I ↾ ran 𝐴) → ⟨𝑦, 𝑧⟩ ∈ 𝐵))
46 df-br 4482 . . . . . . . . . 10 (𝑦 I 𝑧 ↔ ⟨𝑦, 𝑧⟩ ∈ I )
478ideq 5088 . . . . . . . . . 10 (𝑦 I 𝑧𝑦 = 𝑧)
4846, 47bitr3i 264 . . . . . . . . 9 (⟨𝑦, 𝑧⟩ ∈ I ↔ 𝑦 = 𝑧)
49 vex 3080 . . . . . . . . . 10 𝑦 ∈ V
5049elrn 5178 . . . . . . . . 9 (𝑦 ∈ ran 𝐴 ↔ ∃𝑥 𝑥𝐴𝑦)
5148, 50anbi12i 728 . . . . . . . 8 ((⟨𝑦, 𝑧⟩ ∈ I ∧ 𝑦 ∈ ran 𝐴) ↔ (𝑦 = 𝑧 ∧ ∃𝑥 𝑥𝐴𝑦))
528opelres 5213 . . . . . . . 8 (⟨𝑦, 𝑧⟩ ∈ ( I ↾ ran 𝐴) ↔ (⟨𝑦, 𝑧⟩ ∈ I ∧ 𝑦 ∈ ran 𝐴))
53 19.42v 1868 . . . . . . . 8 (∃𝑥(𝑦 = 𝑧𝑥𝐴𝑦) ↔ (𝑦 = 𝑧 ∧ ∃𝑥 𝑥𝐴𝑦))
5451, 52, 533bitr4i 290 . . . . . . 7 (⟨𝑦, 𝑧⟩ ∈ ( I ↾ ran 𝐴) ↔ ∃𝑥(𝑦 = 𝑧𝑥𝐴𝑦))
55 df-br 4482 . . . . . . . 8 (𝑦𝐵𝑧 ↔ ⟨𝑦, 𝑧⟩ ∈ 𝐵)
5655bicomi 212 . . . . . . 7 (⟨𝑦, 𝑧⟩ ∈ 𝐵𝑦𝐵𝑧)
5754, 56imbi12i 338 . . . . . 6 ((⟨𝑦, 𝑧⟩ ∈ ( I ↾ ran 𝐴) → ⟨𝑦, 𝑧⟩ ∈ 𝐵) ↔ (∃𝑥(𝑦 = 𝑧𝑥𝐴𝑦) → 𝑦𝐵𝑧))
58572albii 1723 . . . . 5 (∀𝑦𝑧(⟨𝑦, 𝑧⟩ ∈ ( I ↾ ran 𝐴) → ⟨𝑦, 𝑧⟩ ∈ 𝐵) ↔ ∀𝑦𝑧(∃𝑥(𝑦 = 𝑧𝑥𝐴𝑦) → 𝑦𝐵𝑧))
59 19.23v 1852 . . . . . . . 8 (∀𝑥((𝑦 = 𝑧𝑥𝐴𝑦) → 𝑦𝐵𝑧) ↔ (∃𝑥(𝑦 = 𝑧𝑥𝐴𝑦) → 𝑦𝐵𝑧))
6059bicomi 212 . . . . . . 7 ((∃𝑥(𝑦 = 𝑧𝑥𝐴𝑦) → 𝑦𝐵𝑧) ↔ ∀𝑥((𝑦 = 𝑧𝑥𝐴𝑦) → 𝑦𝐵𝑧))
61602albii 1723 . . . . . 6 (∀𝑦𝑧(∃𝑥(𝑦 = 𝑧𝑥𝐴𝑦) → 𝑦𝐵𝑧) ↔ ∀𝑦𝑧𝑥((𝑦 = 𝑧𝑥𝐴𝑦) → 𝑦𝐵𝑧))
62 alrot3 1975 . . . . . 6 (∀𝑥𝑦𝑧((𝑦 = 𝑧𝑥𝐴𝑦) → 𝑦𝐵𝑧) ↔ ∀𝑦𝑧𝑥((𝑦 = 𝑧𝑥𝐴𝑦) → 𝑦𝐵𝑧))
63 ancomst 466 . . . . . . . . . 10 (((𝑦 = 𝑧𝑥𝐴𝑦) → 𝑦𝐵𝑧) ↔ ((𝑥𝐴𝑦𝑦 = 𝑧) → 𝑦𝐵𝑧))
64 impexp 460 . . . . . . . . . 10 (((𝑥𝐴𝑦𝑦 = 𝑧) → 𝑦𝐵𝑧) ↔ (𝑥𝐴𝑦 → (𝑦 = 𝑧𝑦𝐵𝑧)))
6563, 64bitri 262 . . . . . . . . 9 (((𝑦 = 𝑧𝑥𝐴𝑦) → 𝑦𝐵𝑧) ↔ (𝑥𝐴𝑦 → (𝑦 = 𝑧𝑦𝐵𝑧)))
6665albii 1722 . . . . . . . 8 (∀𝑧((𝑦 = 𝑧𝑥𝐴𝑦) → 𝑦𝐵𝑧) ↔ ∀𝑧(𝑥𝐴𝑦 → (𝑦 = 𝑧𝑦𝐵𝑧)))
67 19.21v 1821 . . . . . . . 8 (∀𝑧(𝑥𝐴𝑦 → (𝑦 = 𝑧𝑦𝐵𝑧)) ↔ (𝑥𝐴𝑦 → ∀𝑧(𝑦 = 𝑧𝑦𝐵𝑧)))
68 equcom 1895 . . . . . . . . . . . 12 (𝑦 = 𝑧𝑧 = 𝑦)
6968imbi1i 337 . . . . . . . . . . 11 ((𝑦 = 𝑧𝑦𝐵𝑧) ↔ (𝑧 = 𝑦𝑦𝐵𝑧))
7069albii 1722 . . . . . . . . . 10 (∀𝑧(𝑦 = 𝑧𝑦𝐵𝑧) ↔ ∀𝑧(𝑧 = 𝑦𝑦𝐵𝑧))
71 breq2 4485 . . . . . . . . . . 11 (𝑧 = 𝑦 → (𝑦𝐵𝑧𝑦𝐵𝑦))
7271equsalvw 1881 . . . . . . . . . 10 (∀𝑧(𝑧 = 𝑦𝑦𝐵𝑧) ↔ 𝑦𝐵𝑦)
7370, 72bitri 262 . . . . . . . . 9 (∀𝑧(𝑦 = 𝑧𝑦𝐵𝑧) ↔ 𝑦𝐵𝑦)
7473imbi2i 324 . . . . . . . 8 ((𝑥𝐴𝑦 → ∀𝑧(𝑦 = 𝑧𝑦𝐵𝑧)) ↔ (𝑥𝐴𝑦𝑦𝐵𝑦))
7566, 67, 743bitri 284 . . . . . . 7 (∀𝑧((𝑦 = 𝑧𝑥𝐴𝑦) → 𝑦𝐵𝑧) ↔ (𝑥𝐴𝑦𝑦𝐵𝑦))
76752albii 1723 . . . . . 6 (∀𝑥𝑦𝑧((𝑦 = 𝑧𝑥𝐴𝑦) → 𝑦𝐵𝑧) ↔ ∀𝑥𝑦(𝑥𝐴𝑦𝑦𝐵𝑦))
7761, 62, 763bitr2i 286 . . . . 5 (∀𝑦𝑧(∃𝑥(𝑦 = 𝑧𝑥𝐴𝑦) → 𝑦𝐵𝑧) ↔ ∀𝑥𝑦(𝑥𝐴𝑦𝑦𝐵𝑦))
7845, 58, 773bitri 284 . . . 4 (( I ↾ ran 𝐴) ⊆ 𝐵 ↔ ∀𝑥𝑦(𝑥𝐴𝑦𝑦𝐵𝑦))
7942, 78anbi12i 728 . . 3 ((( I ↾ dom 𝐴) ⊆ 𝐵 ∧ ( I ↾ ran 𝐴) ⊆ 𝐵) ↔ (∀𝑥𝑦(𝑥𝐴𝑦𝑥𝐵𝑥) ∧ ∀𝑥𝑦(𝑥𝐴𝑦𝑦𝐵𝑦)))
80 19.26-2 1768 . . 3 (∀𝑥𝑦((𝑥𝐴𝑦𝑥𝐵𝑥) ∧ (𝑥𝐴𝑦𝑦𝐵𝑦)) ↔ (∀𝑥𝑦(𝑥𝐴𝑦𝑥𝐵𝑥) ∧ ∀𝑥𝑦(𝑥𝐴𝑦𝑦𝐵𝑦)))
81 pm4.76 905 . . . 4 (((𝑥𝐴𝑦𝑥𝐵𝑥) ∧ (𝑥𝐴𝑦𝑦𝐵𝑦)) ↔ (𝑥𝐴𝑦 → (𝑥𝐵𝑥𝑦𝐵𝑦)))
82812albii 1723 . . 3 (∀𝑥𝑦((𝑥𝐴𝑦𝑥𝐵𝑥) ∧ (𝑥𝐴𝑦𝑦𝐵𝑦)) ↔ ∀𝑥𝑦(𝑥𝐴𝑦 → (𝑥𝐵𝑥𝑦𝐵𝑦)))
8379, 80, 823bitr2i 286 . 2 ((( I ↾ dom 𝐴) ⊆ 𝐵 ∧ ( I ↾ ran 𝐴) ⊆ 𝐵) ↔ ∀𝑥𝑦(𝑥𝐴𝑦 → (𝑥𝐵𝑥𝑦𝐵𝑦)))
842, 3, 833bitr2i 286 1 (( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ 𝐵 ↔ ∀𝑥𝑦(𝑥𝐴𝑦 → (𝑥𝐵𝑥𝑦𝐵𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  wal 1472  wex 1694  wcel 1938  cun 3442  wss 3444  cop 4034   class class class wbr 4481   I cid 4842  dom cdm 4932  ran crn 4933  cres 4934  Rel wrel 4937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-sep 4607  ax-nul 4616  ax-pr 4732
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ral 2805  df-rex 2806  df-rab 2809  df-v 3079  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-nul 3778  df-if 3940  df-sn 4029  df-pr 4031  df-op 4035  df-br 4482  df-opab 4542  df-id 4847  df-xp 4938  df-rel 4939  df-cnv 4940  df-dm 4942  df-rn 4943  df-res 4944
This theorem is referenced by:  reflexg  36827
  Copyright terms: Public domain W3C validator