![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > unicls | Structured version Visualization version GIF version |
Description: The union of the closed set is the underlying set of the topology. (Contributed by Thierry Arnoux, 21-Sep-2017.) |
Ref | Expression |
---|---|
unicls.1 | ⊢ 𝐽 ∈ Top |
unicls.2 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
unicls | ⊢ ∪ (Clsd‘𝐽) = 𝑋 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unicls.2 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | cldss2 21056 | . . 3 ⊢ (Clsd‘𝐽) ⊆ 𝒫 𝑋 |
3 | sspwuni 4763 | . . 3 ⊢ ((Clsd‘𝐽) ⊆ 𝒫 𝑋 ↔ ∪ (Clsd‘𝐽) ⊆ 𝑋) | |
4 | 2, 3 | mpbi 220 | . 2 ⊢ ∪ (Clsd‘𝐽) ⊆ 𝑋 |
5 | unicls.1 | . . 3 ⊢ 𝐽 ∈ Top | |
6 | 1 | topcld 21061 | . . 3 ⊢ (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽)) |
7 | 5, 6 | ax-mp 5 | . 2 ⊢ 𝑋 ∈ (Clsd‘𝐽) |
8 | unissel 4620 | . 2 ⊢ ((∪ (Clsd‘𝐽) ⊆ 𝑋 ∧ 𝑋 ∈ (Clsd‘𝐽)) → ∪ (Clsd‘𝐽) = 𝑋) | |
9 | 4, 7, 8 | mp2an 710 | 1 ⊢ ∪ (Clsd‘𝐽) = 𝑋 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ∈ wcel 2139 ⊆ wss 3715 𝒫 cpw 4302 ∪ cuni 4588 ‘cfv 6049 Topctop 20920 Clsdccld 21042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-iota 6012 df-fun 6051 df-fn 6052 df-fv 6057 df-top 20921 df-cld 21045 |
This theorem is referenced by: sxbrsigalem3 30664 sxbrsigalem4 30679 |
Copyright terms: Public domain | W3C validator |