Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  unidmrn Structured version   Visualization version   GIF version

Theorem unidmrn 5634
 Description: The double union of the converse of a class is its field. (Contributed by NM, 4-Jun-2008.)
Assertion
Ref Expression
unidmrn 𝐴 = (dom 𝐴 ∪ ran 𝐴)

Proof of Theorem unidmrn
StepHypRef Expression
1 relcnv 5472 . . . 4 Rel 𝐴
2 relfld 5630 . . . 4 (Rel 𝐴 𝐴 = (dom 𝐴 ∪ ran 𝐴))
31, 2ax-mp 5 . . 3 𝐴 = (dom 𝐴 ∪ ran 𝐴)
43equncomi 3743 . 2 𝐴 = (ran 𝐴 ∪ dom 𝐴)
5 dfdm4 5286 . . 3 dom 𝐴 = ran 𝐴
6 df-rn 5095 . . 3 ran 𝐴 = dom 𝐴
75, 6uneq12i 3749 . 2 (dom 𝐴 ∪ ran 𝐴) = (ran 𝐴 ∪ dom 𝐴)
84, 7eqtr4i 2646 1 𝐴 = (dom 𝐴 ∪ ran 𝐴)
 Colors of variables: wff setvar class Syntax hints:   = wceq 1480   ∪ cun 3558  ∪ cuni 4409  ◡ccnv 5083  dom cdm 5084  ran crn 5085  Rel wrel 5089 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pr 4877 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-br 4624  df-opab 4684  df-xp 5090  df-rel 5091  df-cnv 5092  df-dm 5094  df-rn 5095 This theorem is referenced by:  relcnvfld  5635  dfdm2  5636
 Copyright terms: Public domain W3C validator