![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniimadom | Structured version Visualization version GIF version |
Description: An upper bound for the cardinality of the union of an image. Theorem 10.48 of [TakeutiZaring] p. 99. (Contributed by NM, 25-Mar-2006.) |
Ref | Expression |
---|---|
uniimadom.1 | ⊢ 𝐴 ∈ V |
uniimadom.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
uniimadom | ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → ∪ (𝐹 “ 𝐴) ≼ (𝐴 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniimadom.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
2 | 1 | funimaex 6137 | . . . 4 ⊢ (Fun 𝐹 → (𝐹 “ 𝐴) ∈ V) |
3 | 2 | adantr 472 | . . 3 ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → (𝐹 “ 𝐴) ∈ V) |
4 | fvelima 6411 | . . . . . . . 8 ⊢ ((Fun 𝐹 ∧ 𝑦 ∈ (𝐹 “ 𝐴)) → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦) | |
5 | 4 | ex 449 | . . . . . . 7 ⊢ (Fun 𝐹 → (𝑦 ∈ (𝐹 “ 𝐴) → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦)) |
6 | breq1 4807 | . . . . . . . . . 10 ⊢ ((𝐹‘𝑥) = 𝑦 → ((𝐹‘𝑥) ≼ 𝐵 ↔ 𝑦 ≼ 𝐵)) | |
7 | 6 | biimpd 219 | . . . . . . . . 9 ⊢ ((𝐹‘𝑥) = 𝑦 → ((𝐹‘𝑥) ≼ 𝐵 → 𝑦 ≼ 𝐵)) |
8 | 7 | reximi 3149 | . . . . . . . 8 ⊢ (∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦 → ∃𝑥 ∈ 𝐴 ((𝐹‘𝑥) ≼ 𝐵 → 𝑦 ≼ 𝐵)) |
9 | r19.36v 3223 | . . . . . . . 8 ⊢ (∃𝑥 ∈ 𝐴 ((𝐹‘𝑥) ≼ 𝐵 → 𝑦 ≼ 𝐵) → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵 → 𝑦 ≼ 𝐵)) | |
10 | 8, 9 | syl 17 | . . . . . . 7 ⊢ (∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦 → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵 → 𝑦 ≼ 𝐵)) |
11 | 5, 10 | syl6 35 | . . . . . 6 ⊢ (Fun 𝐹 → (𝑦 ∈ (𝐹 “ 𝐴) → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵 → 𝑦 ≼ 𝐵))) |
12 | 11 | com23 86 | . . . . 5 ⊢ (Fun 𝐹 → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵 → (𝑦 ∈ (𝐹 “ 𝐴) → 𝑦 ≼ 𝐵))) |
13 | 12 | imp 444 | . . . 4 ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → (𝑦 ∈ (𝐹 “ 𝐴) → 𝑦 ≼ 𝐵)) |
14 | 13 | ralrimiv 3103 | . . 3 ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → ∀𝑦 ∈ (𝐹 “ 𝐴)𝑦 ≼ 𝐵) |
15 | unidom 9577 | . . 3 ⊢ (((𝐹 “ 𝐴) ∈ V ∧ ∀𝑦 ∈ (𝐹 “ 𝐴)𝑦 ≼ 𝐵) → ∪ (𝐹 “ 𝐴) ≼ ((𝐹 “ 𝐴) × 𝐵)) | |
16 | 3, 14, 15 | syl2anc 696 | . 2 ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → ∪ (𝐹 “ 𝐴) ≼ ((𝐹 “ 𝐴) × 𝐵)) |
17 | imadomg 9568 | . . . . 5 ⊢ (𝐴 ∈ V → (Fun 𝐹 → (𝐹 “ 𝐴) ≼ 𝐴)) | |
18 | 1, 17 | ax-mp 5 | . . . 4 ⊢ (Fun 𝐹 → (𝐹 “ 𝐴) ≼ 𝐴) |
19 | uniimadom.2 | . . . . 5 ⊢ 𝐵 ∈ V | |
20 | 19 | xpdom1 8226 | . . . 4 ⊢ ((𝐹 “ 𝐴) ≼ 𝐴 → ((𝐹 “ 𝐴) × 𝐵) ≼ (𝐴 × 𝐵)) |
21 | 18, 20 | syl 17 | . . 3 ⊢ (Fun 𝐹 → ((𝐹 “ 𝐴) × 𝐵) ≼ (𝐴 × 𝐵)) |
22 | 21 | adantr 472 | . 2 ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → ((𝐹 “ 𝐴) × 𝐵) ≼ (𝐴 × 𝐵)) |
23 | domtr 8176 | . 2 ⊢ ((∪ (𝐹 “ 𝐴) ≼ ((𝐹 “ 𝐴) × 𝐵) ∧ ((𝐹 “ 𝐴) × 𝐵) ≼ (𝐴 × 𝐵)) → ∪ (𝐹 “ 𝐴) ≼ (𝐴 × 𝐵)) | |
24 | 16, 22, 23 | syl2anc 696 | 1 ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → ∪ (𝐹 “ 𝐴) ≼ (𝐴 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∀wral 3050 ∃wrex 3051 Vcvv 3340 ∪ cuni 4588 class class class wbr 4804 × cxp 5264 “ cima 5269 Fun wfun 6043 ‘cfv 6049 ≼ cdom 8121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-ac2 9497 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-se 5226 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-isom 6058 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-er 7913 df-map 8027 df-en 8124 df-dom 8125 df-card 8975 df-acn 8978 df-ac 9149 |
This theorem is referenced by: uniimadomf 9579 |
Copyright terms: Public domain | W3C validator |