MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniin Structured version   Visualization version   GIF version

Theorem uniin 4387
Description: The class union of the intersection of two classes. Exercise 4.12(n) of [Mendelson] p. 235. See uniinqs 7691 for a condition where equality holds. (Contributed by NM, 4-Dec-2003.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
uniin (𝐴𝐵) ⊆ ( 𝐴 𝐵)

Proof of Theorem uniin
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.40 1784 . . . 4 (∃𝑦((𝑥𝑦𝑦𝐴) ∧ (𝑥𝑦𝑦𝐵)) → (∃𝑦(𝑥𝑦𝑦𝐴) ∧ ∃𝑦(𝑥𝑦𝑦𝐵)))
2 elin 3757 . . . . . . 7 (𝑦 ∈ (𝐴𝐵) ↔ (𝑦𝐴𝑦𝐵))
32anbi2i 725 . . . . . 6 ((𝑥𝑦𝑦 ∈ (𝐴𝐵)) ↔ (𝑥𝑦 ∧ (𝑦𝐴𝑦𝐵)))
4 anandi 866 . . . . . 6 ((𝑥𝑦 ∧ (𝑦𝐴𝑦𝐵)) ↔ ((𝑥𝑦𝑦𝐴) ∧ (𝑥𝑦𝑦𝐵)))
53, 4bitri 262 . . . . 5 ((𝑥𝑦𝑦 ∈ (𝐴𝐵)) ↔ ((𝑥𝑦𝑦𝐴) ∧ (𝑥𝑦𝑦𝐵)))
65exbii 1763 . . . 4 (∃𝑦(𝑥𝑦𝑦 ∈ (𝐴𝐵)) ↔ ∃𝑦((𝑥𝑦𝑦𝐴) ∧ (𝑥𝑦𝑦𝐵)))
7 eluni 4369 . . . . 5 (𝑥 𝐴 ↔ ∃𝑦(𝑥𝑦𝑦𝐴))
8 eluni 4369 . . . . 5 (𝑥 𝐵 ↔ ∃𝑦(𝑥𝑦𝑦𝐵))
97, 8anbi12i 728 . . . 4 ((𝑥 𝐴𝑥 𝐵) ↔ (∃𝑦(𝑥𝑦𝑦𝐴) ∧ ∃𝑦(𝑥𝑦𝑦𝐵)))
101, 6, 93imtr4i 279 . . 3 (∃𝑦(𝑥𝑦𝑦 ∈ (𝐴𝐵)) → (𝑥 𝐴𝑥 𝐵))
11 eluni 4369 . . 3 (𝑥 (𝐴𝐵) ↔ ∃𝑦(𝑥𝑦𝑦 ∈ (𝐴𝐵)))
12 elin 3757 . . 3 (𝑥 ∈ ( 𝐴 𝐵) ↔ (𝑥 𝐴𝑥 𝐵))
1310, 11, 123imtr4i 279 . 2 (𝑥 (𝐴𝐵) → 𝑥 ∈ ( 𝐴 𝐵))
1413ssriv 3571 1 (𝐴𝐵) ⊆ ( 𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 382  wex 1694  wcel 1976  cin 3538  wss 3539   cuni 4366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-v 3174  df-in 3546  df-ss 3553  df-uni 4367
This theorem is referenced by:  uniinqs  7691  psss  16983  tgval  20512  mapdunirnN  35760
  Copyright terms: Public domain W3C validator