MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniiunlem Structured version   Visualization version   GIF version

Theorem uniiunlem 3674
Description: A subset relationship useful for converting union to indexed union using dfiun2 4525 or dfiun2g 4523 and intersection to indexed intersection using dfiin2 4526. (Contributed by NM, 5-Oct-2006.) (Proof shortened by Mario Carneiro, 26-Sep-2015.)
Assertion
Ref Expression
uniiunlem (∀𝑥𝐴 𝐵𝐷 → (∀𝑥𝐴 𝐵𝐶 ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝐶))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐵   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑦)   𝐷(𝑥,𝑦)

Proof of Theorem uniiunlem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2630 . . . . . 6 (𝑦 = 𝑧 → (𝑦 = 𝐵𝑧 = 𝐵))
21rexbidv 3050 . . . . 5 (𝑦 = 𝑧 → (∃𝑥𝐴 𝑦 = 𝐵 ↔ ∃𝑥𝐴 𝑧 = 𝐵))
32cbvabv 2750 . . . 4 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} = {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}
43sseq1i 3613 . . 3 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝐶 ↔ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ⊆ 𝐶)
5 r19.23v 3021 . . . . 5 (∀𝑥𝐴 (𝑧 = 𝐵𝑧𝐶) ↔ (∃𝑥𝐴 𝑧 = 𝐵𝑧𝐶))
65albii 1744 . . . 4 (∀𝑧𝑥𝐴 (𝑧 = 𝐵𝑧𝐶) ↔ ∀𝑧(∃𝑥𝐴 𝑧 = 𝐵𝑧𝐶))
7 ralcom4 3215 . . . 4 (∀𝑥𝐴𝑧(𝑧 = 𝐵𝑧𝐶) ↔ ∀𝑧𝑥𝐴 (𝑧 = 𝐵𝑧𝐶))
8 abss 3655 . . . 4 ({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ⊆ 𝐶 ↔ ∀𝑧(∃𝑥𝐴 𝑧 = 𝐵𝑧𝐶))
96, 7, 83bitr4i 292 . . 3 (∀𝑥𝐴𝑧(𝑧 = 𝐵𝑧𝐶) ↔ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ⊆ 𝐶)
104, 9bitr4i 267 . 2 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝐶 ↔ ∀𝑥𝐴𝑧(𝑧 = 𝐵𝑧𝐶))
11 nfv 1845 . . . . 5 𝑧 𝐵𝐶
12 eleq1 2692 . . . . 5 (𝑧 = 𝐵 → (𝑧𝐶𝐵𝐶))
1311, 12ceqsalg 3221 . . . 4 (𝐵𝐷 → (∀𝑧(𝑧 = 𝐵𝑧𝐶) ↔ 𝐵𝐶))
1413ralimi 2952 . . 3 (∀𝑥𝐴 𝐵𝐷 → ∀𝑥𝐴 (∀𝑧(𝑧 = 𝐵𝑧𝐶) ↔ 𝐵𝐶))
15 ralbi 3066 . . 3 (∀𝑥𝐴 (∀𝑧(𝑧 = 𝐵𝑧𝐶) ↔ 𝐵𝐶) → (∀𝑥𝐴𝑧(𝑧 = 𝐵𝑧𝐶) ↔ ∀𝑥𝐴 𝐵𝐶))
1614, 15syl 17 . 2 (∀𝑥𝐴 𝐵𝐷 → (∀𝑥𝐴𝑧(𝑧 = 𝐵𝑧𝐶) ↔ ∀𝑥𝐴 𝐵𝐶))
1710, 16syl5rbb 273 1 (∀𝑥𝐴 𝐵𝐷 → (∀𝑥𝐴 𝐵𝐶 ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wal 1478   = wceq 1480  wcel 1992  {cab 2612  wral 2912  wrex 2913  wss 3560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ral 2917  df-rex 2918  df-v 3193  df-in 3567  df-ss 3574
This theorem is referenced by:  mreiincl  16172  iunopn  20623  sigaclci  29968  dihglblem5  36053
  Copyright terms: Public domain W3C validator