MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unipr Structured version   Visualization version   GIF version

Theorem unipr 4857
Description: The union of a pair is the union of its members. Proposition 5.7 of [TakeutiZaring] p. 16. (Contributed by NM, 23-Aug-1993.)
Hypotheses
Ref Expression
unipr.1 𝐴 ∈ V
unipr.2 𝐵 ∈ V
Assertion
Ref Expression
unipr {𝐴, 𝐵} = (𝐴𝐵)

Proof of Theorem unipr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.43 1883 . . . 4 (∃𝑦((𝑥𝑦𝑦 = 𝐴) ∨ (𝑥𝑦𝑦 = 𝐵)) ↔ (∃𝑦(𝑥𝑦𝑦 = 𝐴) ∨ ∃𝑦(𝑥𝑦𝑦 = 𝐵)))
2 vex 3499 . . . . . . . 8 𝑦 ∈ V
32elpr 4592 . . . . . . 7 (𝑦 ∈ {𝐴, 𝐵} ↔ (𝑦 = 𝐴𝑦 = 𝐵))
43anbi2i 624 . . . . . 6 ((𝑥𝑦𝑦 ∈ {𝐴, 𝐵}) ↔ (𝑥𝑦 ∧ (𝑦 = 𝐴𝑦 = 𝐵)))
5 andi 1004 . . . . . 6 ((𝑥𝑦 ∧ (𝑦 = 𝐴𝑦 = 𝐵)) ↔ ((𝑥𝑦𝑦 = 𝐴) ∨ (𝑥𝑦𝑦 = 𝐵)))
64, 5bitri 277 . . . . 5 ((𝑥𝑦𝑦 ∈ {𝐴, 𝐵}) ↔ ((𝑥𝑦𝑦 = 𝐴) ∨ (𝑥𝑦𝑦 = 𝐵)))
76exbii 1848 . . . 4 (∃𝑦(𝑥𝑦𝑦 ∈ {𝐴, 𝐵}) ↔ ∃𝑦((𝑥𝑦𝑦 = 𝐴) ∨ (𝑥𝑦𝑦 = 𝐵)))
8 unipr.1 . . . . . . 7 𝐴 ∈ V
98clel3 3657 . . . . . 6 (𝑥𝐴 ↔ ∃𝑦(𝑦 = 𝐴𝑥𝑦))
10 exancom 1861 . . . . . 6 (∃𝑦(𝑦 = 𝐴𝑥𝑦) ↔ ∃𝑦(𝑥𝑦𝑦 = 𝐴))
119, 10bitri 277 . . . . 5 (𝑥𝐴 ↔ ∃𝑦(𝑥𝑦𝑦 = 𝐴))
12 unipr.2 . . . . . . 7 𝐵 ∈ V
1312clel3 3657 . . . . . 6 (𝑥𝐵 ↔ ∃𝑦(𝑦 = 𝐵𝑥𝑦))
14 exancom 1861 . . . . . 6 (∃𝑦(𝑦 = 𝐵𝑥𝑦) ↔ ∃𝑦(𝑥𝑦𝑦 = 𝐵))
1513, 14bitri 277 . . . . 5 (𝑥𝐵 ↔ ∃𝑦(𝑥𝑦𝑦 = 𝐵))
1611, 15orbi12i 911 . . . 4 ((𝑥𝐴𝑥𝐵) ↔ (∃𝑦(𝑥𝑦𝑦 = 𝐴) ∨ ∃𝑦(𝑥𝑦𝑦 = 𝐵)))
171, 7, 163bitr4ri 306 . . 3 ((𝑥𝐴𝑥𝐵) ↔ ∃𝑦(𝑥𝑦𝑦 ∈ {𝐴, 𝐵}))
1817abbii 2888 . 2 {𝑥 ∣ (𝑥𝐴𝑥𝐵)} = {𝑥 ∣ ∃𝑦(𝑥𝑦𝑦 ∈ {𝐴, 𝐵})}
19 df-un 3943 . 2 (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
20 df-uni 4841 . 2 {𝐴, 𝐵} = {𝑥 ∣ ∃𝑦(𝑥𝑦𝑦 ∈ {𝐴, 𝐵})}
2118, 19, 203eqtr4ri 2857 1 {𝐴, 𝐵} = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 398  wo 843   = wceq 1537  wex 1780  wcel 2114  {cab 2801  Vcvv 3496  cun 3936  {cpr 4571   cuni 4840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-v 3498  df-un 3943  df-sn 4570  df-pr 4572  df-uni 4841
This theorem is referenced by:  uniprg  4858  uniintsn  4915  uniop  5407  unex  7471  rankxplim  9310  mrcun  16895  indistps  21621  indistps2  21622  leordtval2  21822  ex-uni  28207  mnuprdlem1  40615  mnuprdlem2  40616  mnurndlem1  40624  fouriersw  42523
  Copyright terms: Public domain W3C validator