MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unirnioo Structured version   Visualization version   GIF version

Theorem unirnioo 12486
Description: The union of the range of the open interval function. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 30-Jan-2014.)
Assertion
Ref Expression
unirnioo ℝ = ran (,)

Proof of Theorem unirnioo
StepHypRef Expression
1 ioomax 12461 . . . 4 (-∞(,)+∞) = ℝ
2 ioof 12484 . . . . . 6 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
3 ffn 6206 . . . . . 6 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
42, 3ax-mp 5 . . . . 5 (,) Fn (ℝ* × ℝ*)
5 mnfxr 10308 . . . . 5 -∞ ∈ ℝ*
6 pnfxr 10304 . . . . 5 +∞ ∈ ℝ*
7 fnovrn 6975 . . . . 5 (((,) Fn (ℝ* × ℝ*) ∧ -∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞(,)+∞) ∈ ran (,))
84, 5, 6, 7mp3an 1573 . . . 4 (-∞(,)+∞) ∈ ran (,)
91, 8eqeltrri 2836 . . 3 ℝ ∈ ran (,)
10 elssuni 4619 . . 3 (ℝ ∈ ran (,) → ℝ ⊆ ran (,))
119, 10ax-mp 5 . 2 ℝ ⊆ ran (,)
12 frn 6214 . . . 4 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → ran (,) ⊆ 𝒫 ℝ)
132, 12ax-mp 5 . . 3 ran (,) ⊆ 𝒫 ℝ
14 sspwuni 4763 . . 3 (ran (,) ⊆ 𝒫 ℝ ↔ ran (,) ⊆ ℝ)
1513, 14mpbi 220 . 2 ran (,) ⊆ ℝ
1611, 15eqssi 3760 1 ℝ = ran (,)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1632  wcel 2139  wss 3715  𝒫 cpw 4302   cuni 4588   × cxp 5264  ran crn 5267   Fn wfn 6044  wf 6045  (class class class)co 6814  cr 10147  +∞cpnf 10283  -∞cmnf 10284  *cxr 10285  (,)cioo 12388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-pre-lttri 10222  ax-pre-lttrn 10223
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-1st 7334  df-2nd 7335  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-ioo 12392
This theorem is referenced by:  pnfnei  21246  mnfnei  21247  uniretop  22787  tgioo  22820  xrtgioo  22830  bndth  22978  relowlssretop  33540  relowlpssretop  33541  mblfinlem3  33779  mblfinlem4  33780  ismblfin  33781
  Copyright terms: Public domain W3C validator