 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  unisn3 Structured version   Visualization version   GIF version

Theorem unisn3 4485
 Description: Union of a singleton in the form of a restricted class abstraction. (Contributed by NM, 3-Jul-2008.)
Assertion
Ref Expression
unisn3 (𝐴𝐵 {𝑥𝐵𝑥 = 𝐴} = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem unisn3
StepHypRef Expression
1 rabsn 4288 . . 3 (𝐴𝐵 → {𝑥𝐵𝑥 = 𝐴} = {𝐴})
21unieqd 4478 . 2 (𝐴𝐵 {𝑥𝐵𝑥 = 𝐴} = {𝐴})
3 unisng 4484 . 2 (𝐴𝐵 {𝐴} = 𝐴)
42, 3eqtrd 2685 1 (𝐴𝐵 {𝑥𝐵𝑥 = 𝐴} = 𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1523   ∈ wcel 2030  {crab 2945  {csn 4210  ∪ cuni 4468 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-rex 2947  df-rab 2950  df-v 3233  df-un 3612  df-sn 4211  df-pr 4213  df-uni 4469 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator