![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unissb | Structured version Visualization version GIF version |
Description: Relationship involving membership, subset, and union. Exercise 5 of [Enderton] p. 26 and its converse. (Contributed by NM, 20-Sep-2003.) |
Ref | Expression |
---|---|
unissb | ⊢ (∪ 𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluni 4591 | . . . . . 6 ⊢ (𝑦 ∈ ∪ 𝐴 ↔ ∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴)) | |
2 | 1 | imbi1i 338 | . . . . 5 ⊢ ((𝑦 ∈ ∪ 𝐴 → 𝑦 ∈ 𝐵) ↔ (∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵)) |
3 | 19.23v 2020 | . . . . 5 ⊢ (∀𝑥((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵) ↔ (∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵)) | |
4 | 2, 3 | bitr4i 267 | . . . 4 ⊢ ((𝑦 ∈ ∪ 𝐴 → 𝑦 ∈ 𝐵) ↔ ∀𝑥((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵)) |
5 | 4 | albii 1896 | . . 3 ⊢ (∀𝑦(𝑦 ∈ ∪ 𝐴 → 𝑦 ∈ 𝐵) ↔ ∀𝑦∀𝑥((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵)) |
6 | alcom 2186 | . . . 4 ⊢ (∀𝑦∀𝑥((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵) ↔ ∀𝑥∀𝑦((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵)) | |
7 | 19.21v 2017 | . . . . . 6 ⊢ (∀𝑦(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵)) ↔ (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵))) | |
8 | impexp 461 | . . . . . . . 8 ⊢ (((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵) ↔ (𝑦 ∈ 𝑥 → (𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐵))) | |
9 | bi2.04 375 | . . . . . . . 8 ⊢ ((𝑦 ∈ 𝑥 → (𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐵)) ↔ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵))) | |
10 | 8, 9 | bitri 264 | . . . . . . 7 ⊢ (((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵))) |
11 | 10 | albii 1896 | . . . . . 6 ⊢ (∀𝑦((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵) ↔ ∀𝑦(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵))) |
12 | dfss2 3732 | . . . . . . 7 ⊢ (𝑥 ⊆ 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵)) | |
13 | 12 | imbi2i 325 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐵) ↔ (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵))) |
14 | 7, 11, 13 | 3bitr4i 292 | . . . . 5 ⊢ (∀𝑦((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐵)) |
15 | 14 | albii 1896 | . . . 4 ⊢ (∀𝑥∀𝑦((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐵)) |
16 | 6, 15 | bitri 264 | . . 3 ⊢ (∀𝑦∀𝑥((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐵)) |
17 | 5, 16 | bitri 264 | . 2 ⊢ (∀𝑦(𝑦 ∈ ∪ 𝐴 → 𝑦 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐵)) |
18 | dfss2 3732 | . 2 ⊢ (∪ 𝐴 ⊆ 𝐵 ↔ ∀𝑦(𝑦 ∈ ∪ 𝐴 → 𝑦 ∈ 𝐵)) | |
19 | df-ral 3055 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐵)) | |
20 | 17, 18, 19 | 3bitr4i 292 | 1 ⊢ (∪ 𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∀wal 1630 ∃wex 1853 ∈ wcel 2139 ∀wral 3050 ⊆ wss 3715 ∪ cuni 4588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-v 3342 df-in 3722 df-ss 3729 df-uni 4589 |
This theorem is referenced by: uniss2 4622 ssunieq 4624 sspwuni 4763 pwssb 4764 ordunisssuc 5991 sorpssuni 7112 bm2.5ii 7172 sbthlem1 8237 ordunifi 8377 isfinite2 8385 cflim2 9297 fin23lem16 9369 fin23lem29 9375 fin1a2lem11 9444 fin1a2lem13 9446 itunitc 9455 zorng 9538 wuncval2 9781 suplem1pr 10086 suplem2pr 10087 mrcuni 16503 ipodrsfi 17384 mrelatlub 17407 subgint 17839 efgval 18350 toponmre 21119 neips 21139 neiuni 21148 alexsubALTlem2 22073 alexsubALTlem3 22074 tgpconncompeqg 22136 unidmvol 23529 tglnunirn 25663 uniinn0 29694 locfinreflem 30237 sxbrsigalem0 30663 dya2iocuni 30675 dya2iocucvr 30676 carsguni 30700 topjoin 32687 fnejoin1 32690 fnejoin2 32691 ovoliunnfl 33782 voliunnfl 33784 volsupnfl 33785 intidl 34159 unichnidl 34161 salexct 41073 setrec1lem2 42963 setrec2fun 42967 |
Copyright terms: Public domain | W3C validator |