Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unitresr Structured version   Visualization version   GIF version

Theorem unitresr 32838
Description: A lemma for Conjunctive Normal Form unit propagation, in deduction form. (Contributed by Giovanni Mascellani, 15-Sep-2017.)
Hypotheses
Ref Expression
unitresr.1 (𝜑 → (𝜓𝜒))
unitresr.2 (𝜑 → ¬ 𝜓)
Assertion
Ref Expression
unitresr (𝜑𝜒)

Proof of Theorem unitresr
StepHypRef Expression
1 unitresr.1 . . 3 (𝜑 → (𝜓𝜒))
21orcomd 401 . 2 (𝜑 → (𝜒𝜓))
3 unitresr.2 . 2 (𝜑 → ¬ 𝜓)
42, 3unitresl 32837 1 (𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 195  df-or 383
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator