MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unixp Structured version   Visualization version   GIF version

Theorem unixp 5627
Description: The double class union of a nonempty Cartesian product is the union of it members. (Contributed by NM, 17-Sep-2006.)
Assertion
Ref Expression
unixp ((𝐴 × 𝐵) ≠ ∅ → (𝐴 × 𝐵) = (𝐴𝐵))

Proof of Theorem unixp
StepHypRef Expression
1 relxp 5188 . . 3 Rel (𝐴 × 𝐵)
2 relfld 5620 . . 3 (Rel (𝐴 × 𝐵) → (𝐴 × 𝐵) = (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)))
31, 2ax-mp 5 . 2 (𝐴 × 𝐵) = (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵))
4 xpeq2 5089 . . . . 5 (𝐵 = ∅ → (𝐴 × 𝐵) = (𝐴 × ∅))
5 xp0 5511 . . . . 5 (𝐴 × ∅) = ∅
64, 5syl6eq 2671 . . . 4 (𝐵 = ∅ → (𝐴 × 𝐵) = ∅)
76necon3i 2822 . . 3 ((𝐴 × 𝐵) ≠ ∅ → 𝐵 ≠ ∅)
8 xpeq1 5088 . . . . 5 (𝐴 = ∅ → (𝐴 × 𝐵) = (∅ × 𝐵))
9 0xp 5160 . . . . 5 (∅ × 𝐵) = ∅
108, 9syl6eq 2671 . . . 4 (𝐴 = ∅ → (𝐴 × 𝐵) = ∅)
1110necon3i 2822 . . 3 ((𝐴 × 𝐵) ≠ ∅ → 𝐴 ≠ ∅)
12 dmxp 5304 . . . 4 (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴)
13 rnxp 5523 . . . 4 (𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵)
14 uneq12 3740 . . . 4 ((dom (𝐴 × 𝐵) = 𝐴 ∧ ran (𝐴 × 𝐵) = 𝐵) → (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) = (𝐴𝐵))
1512, 13, 14syl2an 494 . . 3 ((𝐵 ≠ ∅ ∧ 𝐴 ≠ ∅) → (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) = (𝐴𝐵))
167, 11, 15syl2anc 692 . 2 ((𝐴 × 𝐵) ≠ ∅ → (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) = (𝐴𝐵))
173, 16syl5eq 2667 1 ((𝐴 × 𝐵) ≠ ∅ → (𝐴 × 𝐵) = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wne 2790  cun 3553  c0 3891   cuni 4402   × cxp 5072  dom cdm 5074  ran crn 5075  Rel wrel 5079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pr 4867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-xp 5080  df-rel 5081  df-cnv 5082  df-dm 5084  df-rn 5085
This theorem is referenced by:  unixpid  5629  rankxpl  8682  rankxplim2  8687  rankxplim3  8688  rankxpsuc  8689
  Copyright terms: Public domain W3C validator