MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unixp0 Structured version   Visualization version   GIF version

Theorem unixp0 6129
Description: A Cartesian product is empty iff its union is empty. (Contributed by NM, 20-Sep-2006.)
Assertion
Ref Expression
unixp0 ((𝐴 × 𝐵) = ∅ ↔ (𝐴 × 𝐵) = ∅)

Proof of Theorem unixp0
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unieq 4840 . . 3 ((𝐴 × 𝐵) = ∅ → (𝐴 × 𝐵) = ∅)
2 uni0 4859 . . 3 ∅ = ∅
31, 2syl6eq 2872 . 2 ((𝐴 × 𝐵) = ∅ → (𝐴 × 𝐵) = ∅)
4 n0 4310 . . . 4 ((𝐴 × 𝐵) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵))
5 elxp3 5613 . . . . . 6 (𝑧 ∈ (𝐴 × 𝐵) ↔ ∃𝑥𝑦(⟨𝑥, 𝑦⟩ = 𝑧 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)))
6 elssuni 4861 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → ⟨𝑥, 𝑦⟩ ⊆ (𝐴 × 𝐵))
7 vex 3498 . . . . . . . . . 10 𝑥 ∈ V
8 vex 3498 . . . . . . . . . 10 𝑦 ∈ V
97, 8opnzi 5359 . . . . . . . . 9 𝑥, 𝑦⟩ ≠ ∅
10 ssn0 4354 . . . . . . . . 9 ((⟨𝑥, 𝑦⟩ ⊆ (𝐴 × 𝐵) ∧ ⟨𝑥, 𝑦⟩ ≠ ∅) → (𝐴 × 𝐵) ≠ ∅)
116, 9, 10sylancl 588 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → (𝐴 × 𝐵) ≠ ∅)
1211adantl 484 . . . . . . 7 ((⟨𝑥, 𝑦⟩ = 𝑧 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)) → (𝐴 × 𝐵) ≠ ∅)
1312exlimivv 1929 . . . . . 6 (∃𝑥𝑦(⟨𝑥, 𝑦⟩ = 𝑧 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)) → (𝐴 × 𝐵) ≠ ∅)
145, 13sylbi 219 . . . . 5 (𝑧 ∈ (𝐴 × 𝐵) → (𝐴 × 𝐵) ≠ ∅)
1514exlimiv 1927 . . . 4 (∃𝑧 𝑧 ∈ (𝐴 × 𝐵) → (𝐴 × 𝐵) ≠ ∅)
164, 15sylbi 219 . . 3 ((𝐴 × 𝐵) ≠ ∅ → (𝐴 × 𝐵) ≠ ∅)
1716necon4i 3051 . 2 ( (𝐴 × 𝐵) = ∅ → (𝐴 × 𝐵) = ∅)
183, 17impbii 211 1 ((𝐴 × 𝐵) = ∅ ↔ (𝐴 × 𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1533  wex 1776  wcel 2110  wne 3016  wss 3936  c0 4291  cop 4567   cuni 4832   × cxp 5548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pr 5322
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-opab 5122  df-xp 5556
This theorem is referenced by:  rankxpsuc  9305
  Copyright terms: Public domain W3C validator