![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unon | Structured version Visualization version GIF version |
Description: The class of all ordinal numbers is its own union. Exercise 11 of [TakeutiZaring] p. 40. (Contributed by NM, 12-Nov-2003.) |
Ref | Expression |
---|---|
unon | ⊢ ∪ On = On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluni2 4590 | . . . 4 ⊢ (𝑥 ∈ ∪ On ↔ ∃𝑦 ∈ On 𝑥 ∈ 𝑦) | |
2 | onelon 5907 | . . . . 5 ⊢ ((𝑦 ∈ On ∧ 𝑥 ∈ 𝑦) → 𝑥 ∈ On) | |
3 | 2 | rexlimiva 3164 | . . . 4 ⊢ (∃𝑦 ∈ On 𝑥 ∈ 𝑦 → 𝑥 ∈ On) |
4 | 1, 3 | sylbi 207 | . . 3 ⊢ (𝑥 ∈ ∪ On → 𝑥 ∈ On) |
5 | vex 3341 | . . . . 5 ⊢ 𝑥 ∈ V | |
6 | 5 | sucid 5963 | . . . 4 ⊢ 𝑥 ∈ suc 𝑥 |
7 | suceloni 7176 | . . . 4 ⊢ (𝑥 ∈ On → suc 𝑥 ∈ On) | |
8 | elunii 4591 | . . . 4 ⊢ ((𝑥 ∈ suc 𝑥 ∧ suc 𝑥 ∈ On) → 𝑥 ∈ ∪ On) | |
9 | 6, 7, 8 | sylancr 698 | . . 3 ⊢ (𝑥 ∈ On → 𝑥 ∈ ∪ On) |
10 | 4, 9 | impbii 199 | . 2 ⊢ (𝑥 ∈ ∪ On ↔ 𝑥 ∈ On) |
11 | 10 | eqriv 2755 | 1 ⊢ ∪ On = On |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1630 ∈ wcel 2137 ∃wrex 3049 ∪ cuni 4586 Oncon0 5882 suc csuc 5884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-8 2139 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 ax-sep 4931 ax-nul 4939 ax-pr 5053 ax-un 7112 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-eu 2609 df-mo 2610 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ne 2931 df-ral 3053 df-rex 3054 df-rab 3057 df-v 3340 df-sbc 3575 df-dif 3716 df-un 3718 df-in 3720 df-ss 3727 df-pss 3729 df-nul 4057 df-if 4229 df-sn 4320 df-pr 4322 df-tp 4324 df-op 4326 df-uni 4587 df-br 4803 df-opab 4863 df-tr 4903 df-eprel 5177 df-po 5185 df-so 5186 df-fr 5223 df-we 5225 df-ord 5885 df-on 5886 df-suc 5888 |
This theorem is referenced by: ordunisuc 7195 limon 7199 orduninsuc 7206 ordtoplem 32738 ordcmp 32750 |
Copyright terms: Public domain | W3C validator |