MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unpreima Structured version   Visualization version   GIF version

Theorem unpreima 6832
Description: Preimage of a union. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
unpreima (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∪ (𝐹𝐵)))

Proof of Theorem unpreima
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 funfn 6384 . 2 (Fun 𝐹𝐹 Fn dom 𝐹)
2 elpreima 6827 . . . 4 (𝐹 Fn dom 𝐹 → (𝑥 ∈ (𝐹 “ (𝐴𝐵)) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ (𝐴𝐵))))
3 elun 4124 . . . . . 6 (𝑥 ∈ ((𝐹𝐴) ∪ (𝐹𝐵)) ↔ (𝑥 ∈ (𝐹𝐴) ∨ 𝑥 ∈ (𝐹𝐵)))
4 elpreima 6827 . . . . . . 7 (𝐹 Fn dom 𝐹 → (𝑥 ∈ (𝐹𝐴) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐴)))
5 elpreima 6827 . . . . . . 7 (𝐹 Fn dom 𝐹 → (𝑥 ∈ (𝐹𝐵) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵)))
64, 5orbi12d 915 . . . . . 6 (𝐹 Fn dom 𝐹 → ((𝑥 ∈ (𝐹𝐴) ∨ 𝑥 ∈ (𝐹𝐵)) ↔ ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐴) ∨ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵))))
73, 6syl5bb 285 . . . . 5 (𝐹 Fn dom 𝐹 → (𝑥 ∈ ((𝐹𝐴) ∪ (𝐹𝐵)) ↔ ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐴) ∨ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵))))
8 elun 4124 . . . . . . 7 ((𝐹𝑥) ∈ (𝐴𝐵) ↔ ((𝐹𝑥) ∈ 𝐴 ∨ (𝐹𝑥) ∈ 𝐵))
98anbi2i 624 . . . . . 6 ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ (𝐴𝐵)) ↔ (𝑥 ∈ dom 𝐹 ∧ ((𝐹𝑥) ∈ 𝐴 ∨ (𝐹𝑥) ∈ 𝐵)))
10 andi 1004 . . . . . 6 ((𝑥 ∈ dom 𝐹 ∧ ((𝐹𝑥) ∈ 𝐴 ∨ (𝐹𝑥) ∈ 𝐵)) ↔ ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐴) ∨ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵)))
119, 10bitri 277 . . . . 5 ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ (𝐴𝐵)) ↔ ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐴) ∨ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵)))
127, 11syl6rbbr 292 . . . 4 (𝐹 Fn dom 𝐹 → ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ (𝐴𝐵)) ↔ 𝑥 ∈ ((𝐹𝐴) ∪ (𝐹𝐵))))
132, 12bitrd 281 . . 3 (𝐹 Fn dom 𝐹 → (𝑥 ∈ (𝐹 “ (𝐴𝐵)) ↔ 𝑥 ∈ ((𝐹𝐴) ∪ (𝐹𝐵))))
1413eqrdv 2819 . 2 (𝐹 Fn dom 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∪ (𝐹𝐵)))
151, 14sylbi 219 1 (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∪ (𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843   = wceq 1533  wcel 2110  cun 3933  ccnv 5553  dom cdm 5554  cima 5557  Fun wfun 6348   Fn wfn 6349  cfv 6354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pr 5329
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-br 5066  df-opab 5128  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-fv 6362
This theorem is referenced by:  sibfof  31598
  Copyright terms: Public domain W3C validator