![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unundir | Structured version Visualization version GIF version |
Description: Union distributes over itself. (Contributed by NM, 17-Aug-2004.) |
Ref | Expression |
---|---|
unundir | ⊢ ((𝐴 ∪ 𝐵) ∪ 𝐶) = ((𝐴 ∪ 𝐶) ∪ (𝐵 ∪ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unidm 3899 | . . 3 ⊢ (𝐶 ∪ 𝐶) = 𝐶 | |
2 | 1 | uneq2i 3907 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∪ (𝐶 ∪ 𝐶)) = ((𝐴 ∪ 𝐵) ∪ 𝐶) |
3 | un4 3916 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∪ (𝐶 ∪ 𝐶)) = ((𝐴 ∪ 𝐶) ∪ (𝐵 ∪ 𝐶)) | |
4 | 2, 3 | eqtr3i 2784 | 1 ⊢ ((𝐴 ∪ 𝐵) ∪ 𝐶) = ((𝐴 ∪ 𝐶) ∪ (𝐵 ∪ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ∪ cun 3713 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-v 3342 df-un 3720 |
This theorem is referenced by: iocunico 38298 |
Copyright terms: Public domain | W3C validator |