MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unwf Structured version   Visualization version   GIF version

Theorem unwf 8617
Description: A binary union is well-founded iff its elements are. (Contributed by Mario Carneiro, 10-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
unwf ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) ↔ (𝐴𝐵) ∈ (𝑅1 “ On))

Proof of Theorem unwf
StepHypRef Expression
1 r1rankidb 8611 . . . . . . . 8 (𝐴 (𝑅1 “ On) → 𝐴 ⊆ (𝑅1‘(rank‘𝐴)))
21adantr 481 . . . . . . 7 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → 𝐴 ⊆ (𝑅1‘(rank‘𝐴)))
3 ssun1 3754 . . . . . . . 8 (rank‘𝐴) ⊆ ((rank‘𝐴) ∪ (rank‘𝐵))
4 rankdmr1 8608 . . . . . . . . 9 (rank‘𝐴) ∈ dom 𝑅1
5 r1funlim 8573 . . . . . . . . . . . 12 (Fun 𝑅1 ∧ Lim dom 𝑅1)
65simpri 478 . . . . . . . . . . 11 Lim dom 𝑅1
7 limord 5743 . . . . . . . . . . 11 (Lim dom 𝑅1 → Ord dom 𝑅1)
86, 7ax-mp 5 . . . . . . . . . 10 Ord dom 𝑅1
9 rankdmr1 8608 . . . . . . . . . 10 (rank‘𝐵) ∈ dom 𝑅1
10 ordunel 6974 . . . . . . . . . 10 ((Ord dom 𝑅1 ∧ (rank‘𝐴) ∈ dom 𝑅1 ∧ (rank‘𝐵) ∈ dom 𝑅1) → ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ dom 𝑅1)
118, 4, 9, 10mp3an 1421 . . . . . . . . 9 ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ dom 𝑅1
12 r1ord3g 8586 . . . . . . . . 9 (((rank‘𝐴) ∈ dom 𝑅1 ∧ ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ dom 𝑅1) → ((rank‘𝐴) ⊆ ((rank‘𝐴) ∪ (rank‘𝐵)) → (𝑅1‘(rank‘𝐴)) ⊆ (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵)))))
134, 11, 12mp2an 707 . . . . . . . 8 ((rank‘𝐴) ⊆ ((rank‘𝐴) ∪ (rank‘𝐵)) → (𝑅1‘(rank‘𝐴)) ⊆ (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵))))
143, 13ax-mp 5 . . . . . . 7 (𝑅1‘(rank‘𝐴)) ⊆ (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵)))
152, 14syl6ss 3595 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → 𝐴 ⊆ (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵))))
16 r1rankidb 8611 . . . . . . . 8 (𝐵 (𝑅1 “ On) → 𝐵 ⊆ (𝑅1‘(rank‘𝐵)))
1716adantl 482 . . . . . . 7 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → 𝐵 ⊆ (𝑅1‘(rank‘𝐵)))
18 ssun2 3755 . . . . . . . 8 (rank‘𝐵) ⊆ ((rank‘𝐴) ∪ (rank‘𝐵))
19 r1ord3g 8586 . . . . . . . . 9 (((rank‘𝐵) ∈ dom 𝑅1 ∧ ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ dom 𝑅1) → ((rank‘𝐵) ⊆ ((rank‘𝐴) ∪ (rank‘𝐵)) → (𝑅1‘(rank‘𝐵)) ⊆ (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵)))))
209, 11, 19mp2an 707 . . . . . . . 8 ((rank‘𝐵) ⊆ ((rank‘𝐴) ∪ (rank‘𝐵)) → (𝑅1‘(rank‘𝐵)) ⊆ (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵))))
2118, 20ax-mp 5 . . . . . . 7 (𝑅1‘(rank‘𝐵)) ⊆ (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵)))
2217, 21syl6ss 3595 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → 𝐵 ⊆ (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵))))
2315, 22unssd 3767 . . . . 5 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (𝐴𝐵) ⊆ (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵))))
24 fvex 6158 . . . . . 6 (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵))) ∈ V
2524elpw2 4788 . . . . 5 ((𝐴𝐵) ∈ 𝒫 (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵))) ↔ (𝐴𝐵) ⊆ (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵))))
2623, 25sylibr 224 . . . 4 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (𝐴𝐵) ∈ 𝒫 (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵))))
27 r1sucg 8576 . . . . 5 (((rank‘𝐴) ∪ (rank‘𝐵)) ∈ dom 𝑅1 → (𝑅1‘suc ((rank‘𝐴) ∪ (rank‘𝐵))) = 𝒫 (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵))))
2811, 27ax-mp 5 . . . 4 (𝑅1‘suc ((rank‘𝐴) ∪ (rank‘𝐵))) = 𝒫 (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵)))
2926, 28syl6eleqr 2709 . . 3 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (𝐴𝐵) ∈ (𝑅1‘suc ((rank‘𝐴) ∪ (rank‘𝐵))))
30 r1elwf 8603 . . 3 ((𝐴𝐵) ∈ (𝑅1‘suc ((rank‘𝐴) ∪ (rank‘𝐵))) → (𝐴𝐵) ∈ (𝑅1 “ On))
3129, 30syl 17 . 2 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (𝐴𝐵) ∈ (𝑅1 “ On))
32 ssun1 3754 . . . 4 𝐴 ⊆ (𝐴𝐵)
33 sswf 8615 . . . 4 (((𝐴𝐵) ∈ (𝑅1 “ On) ∧ 𝐴 ⊆ (𝐴𝐵)) → 𝐴 (𝑅1 “ On))
3432, 33mpan2 706 . . 3 ((𝐴𝐵) ∈ (𝑅1 “ On) → 𝐴 (𝑅1 “ On))
35 ssun2 3755 . . . 4 𝐵 ⊆ (𝐴𝐵)
36 sswf 8615 . . . 4 (((𝐴𝐵) ∈ (𝑅1 “ On) ∧ 𝐵 ⊆ (𝐴𝐵)) → 𝐵 (𝑅1 “ On))
3735, 36mpan2 706 . . 3 ((𝐴𝐵) ∈ (𝑅1 “ On) → 𝐵 (𝑅1 “ On))
3834, 37jca 554 . 2 ((𝐴𝐵) ∈ (𝑅1 “ On) → (𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)))
3931, 38impbii 199 1 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) ↔ (𝐴𝐵) ∈ (𝑅1 “ On))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  cun 3553  wss 3555  𝒫 cpw 4130   cuni 4402  dom cdm 5074  cima 5077  Ord word 5681  Oncon0 5682  Lim wlim 5683  suc csuc 5684  Fun wfun 5841  cfv 5847  𝑅1cr1 8569  rankcrnk 8570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-om 7013  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-r1 8571  df-rank 8572
This theorem is referenced by:  prwf  8618  rankunb  8657
  Copyright terms: Public domain W3C validator