MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unwf Structured version   Visualization version   GIF version

Theorem unwf 9241
Description: A binary union is well-founded iff its elements are. (Contributed by Mario Carneiro, 10-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
unwf ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) ↔ (𝐴𝐵) ∈ (𝑅1 “ On))

Proof of Theorem unwf
StepHypRef Expression
1 r1rankidb 9235 . . . . . . . 8 (𝐴 (𝑅1 “ On) → 𝐴 ⊆ (𝑅1‘(rank‘𝐴)))
21adantr 483 . . . . . . 7 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → 𝐴 ⊆ (𝑅1‘(rank‘𝐴)))
3 ssun1 4150 . . . . . . . 8 (rank‘𝐴) ⊆ ((rank‘𝐴) ∪ (rank‘𝐵))
4 rankdmr1 9232 . . . . . . . . 9 (rank‘𝐴) ∈ dom 𝑅1
5 r1funlim 9197 . . . . . . . . . . . 12 (Fun 𝑅1 ∧ Lim dom 𝑅1)
65simpri 488 . . . . . . . . . . 11 Lim dom 𝑅1
7 limord 6252 . . . . . . . . . . 11 (Lim dom 𝑅1 → Ord dom 𝑅1)
86, 7ax-mp 5 . . . . . . . . . 10 Ord dom 𝑅1
9 rankdmr1 9232 . . . . . . . . . 10 (rank‘𝐵) ∈ dom 𝑅1
10 ordunel 7544 . . . . . . . . . 10 ((Ord dom 𝑅1 ∧ (rank‘𝐴) ∈ dom 𝑅1 ∧ (rank‘𝐵) ∈ dom 𝑅1) → ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ dom 𝑅1)
118, 4, 9, 10mp3an 1457 . . . . . . . . 9 ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ dom 𝑅1
12 r1ord3g 9210 . . . . . . . . 9 (((rank‘𝐴) ∈ dom 𝑅1 ∧ ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ dom 𝑅1) → ((rank‘𝐴) ⊆ ((rank‘𝐴) ∪ (rank‘𝐵)) → (𝑅1‘(rank‘𝐴)) ⊆ (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵)))))
134, 11, 12mp2an 690 . . . . . . . 8 ((rank‘𝐴) ⊆ ((rank‘𝐴) ∪ (rank‘𝐵)) → (𝑅1‘(rank‘𝐴)) ⊆ (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵))))
143, 13ax-mp 5 . . . . . . 7 (𝑅1‘(rank‘𝐴)) ⊆ (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵)))
152, 14sstrdi 3981 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → 𝐴 ⊆ (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵))))
16 r1rankidb 9235 . . . . . . . 8 (𝐵 (𝑅1 “ On) → 𝐵 ⊆ (𝑅1‘(rank‘𝐵)))
1716adantl 484 . . . . . . 7 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → 𝐵 ⊆ (𝑅1‘(rank‘𝐵)))
18 ssun2 4151 . . . . . . . 8 (rank‘𝐵) ⊆ ((rank‘𝐴) ∪ (rank‘𝐵))
19 r1ord3g 9210 . . . . . . . . 9 (((rank‘𝐵) ∈ dom 𝑅1 ∧ ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ dom 𝑅1) → ((rank‘𝐵) ⊆ ((rank‘𝐴) ∪ (rank‘𝐵)) → (𝑅1‘(rank‘𝐵)) ⊆ (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵)))))
209, 11, 19mp2an 690 . . . . . . . 8 ((rank‘𝐵) ⊆ ((rank‘𝐴) ∪ (rank‘𝐵)) → (𝑅1‘(rank‘𝐵)) ⊆ (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵))))
2118, 20ax-mp 5 . . . . . . 7 (𝑅1‘(rank‘𝐵)) ⊆ (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵)))
2217, 21sstrdi 3981 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → 𝐵 ⊆ (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵))))
2315, 22unssd 4164 . . . . 5 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (𝐴𝐵) ⊆ (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵))))
24 fvex 6685 . . . . . 6 (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵))) ∈ V
2524elpw2 5250 . . . . 5 ((𝐴𝐵) ∈ 𝒫 (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵))) ↔ (𝐴𝐵) ⊆ (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵))))
2623, 25sylibr 236 . . . 4 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (𝐴𝐵) ∈ 𝒫 (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵))))
27 r1sucg 9200 . . . . 5 (((rank‘𝐴) ∪ (rank‘𝐵)) ∈ dom 𝑅1 → (𝑅1‘suc ((rank‘𝐴) ∪ (rank‘𝐵))) = 𝒫 (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵))))
2811, 27ax-mp 5 . . . 4 (𝑅1‘suc ((rank‘𝐴) ∪ (rank‘𝐵))) = 𝒫 (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵)))
2926, 28eleqtrrdi 2926 . . 3 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (𝐴𝐵) ∈ (𝑅1‘suc ((rank‘𝐴) ∪ (rank‘𝐵))))
30 r1elwf 9227 . . 3 ((𝐴𝐵) ∈ (𝑅1‘suc ((rank‘𝐴) ∪ (rank‘𝐵))) → (𝐴𝐵) ∈ (𝑅1 “ On))
3129, 30syl 17 . 2 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (𝐴𝐵) ∈ (𝑅1 “ On))
32 ssun1 4150 . . . 4 𝐴 ⊆ (𝐴𝐵)
33 sswf 9239 . . . 4 (((𝐴𝐵) ∈ (𝑅1 “ On) ∧ 𝐴 ⊆ (𝐴𝐵)) → 𝐴 (𝑅1 “ On))
3432, 33mpan2 689 . . 3 ((𝐴𝐵) ∈ (𝑅1 “ On) → 𝐴 (𝑅1 “ On))
35 ssun2 4151 . . . 4 𝐵 ⊆ (𝐴𝐵)
36 sswf 9239 . . . 4 (((𝐴𝐵) ∈ (𝑅1 “ On) ∧ 𝐵 ⊆ (𝐴𝐵)) → 𝐵 (𝑅1 “ On))
3735, 36mpan2 689 . . 3 ((𝐴𝐵) ∈ (𝑅1 “ On) → 𝐵 (𝑅1 “ On))
3834, 37jca 514 . 2 ((𝐴𝐵) ∈ (𝑅1 “ On) → (𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)))
3931, 38impbii 211 1 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) ↔ (𝐴𝐵) ∈ (𝑅1 “ On))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  cun 3936  wss 3938  𝒫 cpw 4541   cuni 4840  dom cdm 5557  cima 5560  Ord word 6192  Oncon0 6193  Lim wlim 6194  suc csuc 6195  Fun wfun 6351  cfv 6357  𝑅1cr1 9193  rankcrnk 9194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-r1 9195  df-rank 9196
This theorem is referenced by:  prwf  9242  rankunb  9281
  Copyright terms: Public domain W3C validator