![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unxpdom | Structured version Visualization version GIF version |
Description: Cartesian product dominates union for sets with cardinality greater than 1. Proposition 10.36 of [TakeutiZaring] p. 93. (Contributed by Mario Carneiro, 13-Jan-2013.) (Proof shortened by Mario Carneiro, 27-Apr-2015.) |
Ref | Expression |
---|---|
unxpdom | ⊢ ((1𝑜 ≺ 𝐴 ∧ 1𝑜 ≺ 𝐵) → (𝐴 ∪ 𝐵) ≼ (𝐴 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relsdom 8004 | . . . 4 ⊢ Rel ≺ | |
2 | 1 | brrelex2i 5193 | . . 3 ⊢ (1𝑜 ≺ 𝐴 → 𝐴 ∈ V) |
3 | 1 | brrelex2i 5193 | . . 3 ⊢ (1𝑜 ≺ 𝐵 → 𝐵 ∈ V) |
4 | 2, 3 | anim12i 589 | . 2 ⊢ ((1𝑜 ≺ 𝐴 ∧ 1𝑜 ≺ 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
5 | breq2 4689 | . . . . 5 ⊢ (𝑥 = 𝐴 → (1𝑜 ≺ 𝑥 ↔ 1𝑜 ≺ 𝐴)) | |
6 | 5 | anbi1d 741 | . . . 4 ⊢ (𝑥 = 𝐴 → ((1𝑜 ≺ 𝑥 ∧ 1𝑜 ≺ 𝑦) ↔ (1𝑜 ≺ 𝐴 ∧ 1𝑜 ≺ 𝑦))) |
7 | uneq1 3793 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∪ 𝑦) = (𝐴 ∪ 𝑦)) | |
8 | xpeq1 5157 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 × 𝑦) = (𝐴 × 𝑦)) | |
9 | 7, 8 | breq12d 4698 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∪ 𝑦) ≼ (𝑥 × 𝑦) ↔ (𝐴 ∪ 𝑦) ≼ (𝐴 × 𝑦))) |
10 | 6, 9 | imbi12d 333 | . . 3 ⊢ (𝑥 = 𝐴 → (((1𝑜 ≺ 𝑥 ∧ 1𝑜 ≺ 𝑦) → (𝑥 ∪ 𝑦) ≼ (𝑥 × 𝑦)) ↔ ((1𝑜 ≺ 𝐴 ∧ 1𝑜 ≺ 𝑦) → (𝐴 ∪ 𝑦) ≼ (𝐴 × 𝑦)))) |
11 | breq2 4689 | . . . . 5 ⊢ (𝑦 = 𝐵 → (1𝑜 ≺ 𝑦 ↔ 1𝑜 ≺ 𝐵)) | |
12 | 11 | anbi2d 740 | . . . 4 ⊢ (𝑦 = 𝐵 → ((1𝑜 ≺ 𝐴 ∧ 1𝑜 ≺ 𝑦) ↔ (1𝑜 ≺ 𝐴 ∧ 1𝑜 ≺ 𝐵))) |
13 | uneq2 3794 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴 ∪ 𝑦) = (𝐴 ∪ 𝐵)) | |
14 | xpeq2 5163 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴 × 𝑦) = (𝐴 × 𝐵)) | |
15 | 13, 14 | breq12d 4698 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 ∪ 𝑦) ≼ (𝐴 × 𝑦) ↔ (𝐴 ∪ 𝐵) ≼ (𝐴 × 𝐵))) |
16 | 12, 15 | imbi12d 333 | . . 3 ⊢ (𝑦 = 𝐵 → (((1𝑜 ≺ 𝐴 ∧ 1𝑜 ≺ 𝑦) → (𝐴 ∪ 𝑦) ≼ (𝐴 × 𝑦)) ↔ ((1𝑜 ≺ 𝐴 ∧ 1𝑜 ≺ 𝐵) → (𝐴 ∪ 𝐵) ≼ (𝐴 × 𝐵)))) |
17 | eqid 2651 | . . . 4 ⊢ (𝑧 ∈ (𝑥 ∪ 𝑦) ↦ if(𝑧 ∈ 𝑥, 〈𝑧, if(𝑧 = 𝑣, 𝑤, 𝑡)〉, 〈if(𝑧 = 𝑤, 𝑢, 𝑣), 𝑧〉)) = (𝑧 ∈ (𝑥 ∪ 𝑦) ↦ if(𝑧 ∈ 𝑥, 〈𝑧, if(𝑧 = 𝑣, 𝑤, 𝑡)〉, 〈if(𝑧 = 𝑤, 𝑢, 𝑣), 𝑧〉)) | |
18 | eqid 2651 | . . . 4 ⊢ if(𝑧 ∈ 𝑥, 〈𝑧, if(𝑧 = 𝑣, 𝑤, 𝑡)〉, 〈if(𝑧 = 𝑤, 𝑢, 𝑣), 𝑧〉) = if(𝑧 ∈ 𝑥, 〈𝑧, if(𝑧 = 𝑣, 𝑤, 𝑡)〉, 〈if(𝑧 = 𝑤, 𝑢, 𝑣), 𝑧〉) | |
19 | 17, 18 | unxpdomlem3 8207 | . . 3 ⊢ ((1𝑜 ≺ 𝑥 ∧ 1𝑜 ≺ 𝑦) → (𝑥 ∪ 𝑦) ≼ (𝑥 × 𝑦)) |
20 | 10, 16, 19 | vtocl2g 3301 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((1𝑜 ≺ 𝐴 ∧ 1𝑜 ≺ 𝐵) → (𝐴 ∪ 𝐵) ≼ (𝐴 × 𝐵))) |
21 | 4, 20 | mpcom 38 | 1 ⊢ ((1𝑜 ≺ 𝐴 ∧ 1𝑜 ≺ 𝐵) → (𝐴 ∪ 𝐵) ≼ (𝐴 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ∪ cun 3605 ifcif 4119 〈cop 4216 class class class wbr 4685 ↦ cmpt 4762 × cxp 5141 1𝑜c1o 7598 ≼ cdom 7995 ≺ csdm 7996 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-om 7108 df-1o 7605 df-2o 7606 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 |
This theorem is referenced by: unxpdom2 8209 sucxpdom 8210 cdaxpdom 9049 |
Copyright terms: Public domain | W3C validator |