Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upbdrech Structured version   Visualization version   GIF version

Theorem upbdrech 41561
Description: Choice of an upper bound for a nonempty bunded set (image set version). (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
upbdrech.a (𝜑𝐴 ≠ ∅)
upbdrech.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
upbdrech.bd (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
upbdrech.c 𝐶 = sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < )
Assertion
Ref Expression
upbdrech (𝜑 → (𝐶 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝐶))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑦,𝐵,𝑧   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝐵(𝑥)   𝐶(𝑥,𝑦,𝑧)

Proof of Theorem upbdrech
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 upbdrech.c . . 3 𝐶 = sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < )
2 upbdrech.b . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
32ralrimiva 3180 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐵 ∈ ℝ)
4 nfra1 3217 . . . . . . 7 𝑥𝑥𝐴 𝐵 ∈ ℝ
5 nfv 1909 . . . . . . 7 𝑥 𝑧 ∈ ℝ
6 simp3 1133 . . . . . . . . 9 ((∀𝑥𝐴 𝐵 ∈ ℝ ∧ 𝑥𝐴𝑧 = 𝐵) → 𝑧 = 𝐵)
7 rspa 3204 . . . . . . . . . 10 ((∀𝑥𝐴 𝐵 ∈ ℝ ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
873adant3 1127 . . . . . . . . 9 ((∀𝑥𝐴 𝐵 ∈ ℝ ∧ 𝑥𝐴𝑧 = 𝐵) → 𝐵 ∈ ℝ)
96, 8eqeltrd 2911 . . . . . . . 8 ((∀𝑥𝐴 𝐵 ∈ ℝ ∧ 𝑥𝐴𝑧 = 𝐵) → 𝑧 ∈ ℝ)
1093exp 1114 . . . . . . 7 (∀𝑥𝐴 𝐵 ∈ ℝ → (𝑥𝐴 → (𝑧 = 𝐵𝑧 ∈ ℝ)))
114, 5, 10rexlimd 3315 . . . . . 6 (∀𝑥𝐴 𝐵 ∈ ℝ → (∃𝑥𝐴 𝑧 = 𝐵𝑧 ∈ ℝ))
1211abssdv 4043 . . . . 5 (∀𝑥𝐴 𝐵 ∈ ℝ → {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ⊆ ℝ)
133, 12syl 17 . . . 4 (𝜑 → {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ⊆ ℝ)
14 upbdrech.a . . . . . . 7 (𝜑𝐴 ≠ ∅)
15 eqidd 2820 . . . . . . . 8 (𝑥𝐴𝐵 = 𝐵)
1615rgen 3146 . . . . . . 7 𝑥𝐴 𝐵 = 𝐵
17 r19.2z 4438 . . . . . . 7 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 = 𝐵) → ∃𝑥𝐴 𝐵 = 𝐵)
1814, 16, 17sylancl 588 . . . . . 6 (𝜑 → ∃𝑥𝐴 𝐵 = 𝐵)
19 nfv 1909 . . . . . . 7 𝑥𝜑
20 nfre1 3304 . . . . . . . 8 𝑥𝑥𝐴 𝑧 = 𝐵
2120nfex 2337 . . . . . . 7 𝑥𝑧𝑥𝐴 𝑧 = 𝐵
22 simpr 487 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝑥𝐴)
23 elex 3511 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ → 𝐵 ∈ V)
242, 23syl 17 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐵 ∈ V)
25 isset 3505 . . . . . . . . . . . 12 (𝐵 ∈ V ↔ ∃𝑧 𝑧 = 𝐵)
2624, 25sylib 220 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ∃𝑧 𝑧 = 𝐵)
27 rspe 3302 . . . . . . . . . . 11 ((𝑥𝐴 ∧ ∃𝑧 𝑧 = 𝐵) → ∃𝑥𝐴𝑧 𝑧 = 𝐵)
2822, 26, 27syl2anc 586 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ∃𝑥𝐴𝑧 𝑧 = 𝐵)
29 rexcom4 3247 . . . . . . . . . 10 (∃𝑥𝐴𝑧 𝑧 = 𝐵 ↔ ∃𝑧𝑥𝐴 𝑧 = 𝐵)
3028, 29sylib 220 . . . . . . . . 9 ((𝜑𝑥𝐴) → ∃𝑧𝑥𝐴 𝑧 = 𝐵)
31303adant3 1127 . . . . . . . 8 ((𝜑𝑥𝐴𝐵 = 𝐵) → ∃𝑧𝑥𝐴 𝑧 = 𝐵)
32313exp 1114 . . . . . . 7 (𝜑 → (𝑥𝐴 → (𝐵 = 𝐵 → ∃𝑧𝑥𝐴 𝑧 = 𝐵)))
3319, 21, 32rexlimd 3315 . . . . . 6 (𝜑 → (∃𝑥𝐴 𝐵 = 𝐵 → ∃𝑧𝑥𝐴 𝑧 = 𝐵))
3418, 33mpd 15 . . . . 5 (𝜑 → ∃𝑧𝑥𝐴 𝑧 = 𝐵)
35 abn0 4334 . . . . 5 ({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ≠ ∅ ↔ ∃𝑧𝑥𝐴 𝑧 = 𝐵)
3634, 35sylibr 236 . . . 4 (𝜑 → {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ≠ ∅)
37 upbdrech.bd . . . . 5 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
38 vex 3496 . . . . . . . . . . . . 13 𝑤 ∈ V
39 eqeq1 2823 . . . . . . . . . . . . . 14 (𝑧 = 𝑤 → (𝑧 = 𝐵𝑤 = 𝐵))
4039rexbidv 3295 . . . . . . . . . . . . 13 (𝑧 = 𝑤 → (∃𝑥𝐴 𝑧 = 𝐵 ↔ ∃𝑥𝐴 𝑤 = 𝐵))
4138, 40elab 3665 . . . . . . . . . . . 12 (𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ↔ ∃𝑥𝐴 𝑤 = 𝐵)
4241biimpi 218 . . . . . . . . . . 11 (𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} → ∃𝑥𝐴 𝑤 = 𝐵)
4342adantl 484 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}) → ∃𝑥𝐴 𝑤 = 𝐵)
44 nfra1 3217 . . . . . . . . . . . . 13 𝑥𝑥𝐴 𝐵𝑦
4519, 44nfan 1894 . . . . . . . . . . . 12 𝑥(𝜑 ∧ ∀𝑥𝐴 𝐵𝑦)
4620nfsab 2810 . . . . . . . . . . . 12 𝑥 𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}
4745, 46nfan 1894 . . . . . . . . . . 11 𝑥((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵})
48 nfv 1909 . . . . . . . . . . 11 𝑥 𝑤𝑦
49 simp3 1133 . . . . . . . . . . . . . 14 (((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑥𝐴𝑤 = 𝐵) → 𝑤 = 𝐵)
50 simp1r 1193 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑥𝐴𝑤 = 𝐵) → ∀𝑥𝐴 𝐵𝑦)
51 simp2 1132 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑥𝐴𝑤 = 𝐵) → 𝑥𝐴)
52 rspa 3204 . . . . . . . . . . . . . . 15 ((∀𝑥𝐴 𝐵𝑦𝑥𝐴) → 𝐵𝑦)
5350, 51, 52syl2anc 586 . . . . . . . . . . . . . 14 (((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑥𝐴𝑤 = 𝐵) → 𝐵𝑦)
5449, 53eqbrtrd 5079 . . . . . . . . . . . . 13 (((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑥𝐴𝑤 = 𝐵) → 𝑤𝑦)
55543exp 1114 . . . . . . . . . . . 12 ((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) → (𝑥𝐴 → (𝑤 = 𝐵𝑤𝑦)))
5655adantr 483 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}) → (𝑥𝐴 → (𝑤 = 𝐵𝑤𝑦)))
5747, 48, 56rexlimd 3315 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}) → (∃𝑥𝐴 𝑤 = 𝐵𝑤𝑦))
5843, 57mpd 15 . . . . . . . . 9 (((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}) → 𝑤𝑦)
5958ralrimiva 3180 . . . . . . . 8 ((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) → ∀𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑤𝑦)
60593adant2 1126 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝑦) → ∀𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑤𝑦)
61603exp 1114 . . . . . 6 (𝜑 → (𝑦 ∈ ℝ → (∀𝑥𝐴 𝐵𝑦 → ∀𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑤𝑦)))
6261reximdvai 3270 . . . . 5 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦 → ∃𝑦 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑤𝑦))
6337, 62mpd 15 . . . 4 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑤𝑦)
64 suprcl 11593 . . . 4 (({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ⊆ ℝ ∧ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑤𝑦) → sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < ) ∈ ℝ)
6513, 36, 63, 64syl3anc 1366 . . 3 (𝜑 → sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < ) ∈ ℝ)
661, 65eqeltrid 2915 . 2 (𝜑𝐶 ∈ ℝ)
6713adantr 483 . . . . 5 ((𝜑𝑥𝐴) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ⊆ ℝ)
6830, 35sylibr 236 . . . . 5 ((𝜑𝑥𝐴) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ≠ ∅)
6963adantr 483 . . . . 5 ((𝜑𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑤𝑦)
70 elabrexg 41293 . . . . . 6 ((𝑥𝐴𝐵 ∈ ℝ) → 𝐵 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵})
7122, 2, 70syl2anc 586 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵})
72 suprub 11594 . . . . 5 ((({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ⊆ ℝ ∧ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑤𝑦) ∧ 𝐵 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}) → 𝐵 ≤ sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < ))
7367, 68, 69, 71, 72syl31anc 1368 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ≤ sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < ))
7473, 1breqtrrdi 5099 . . 3 ((𝜑𝑥𝐴) → 𝐵𝐶)
7574ralrimiva 3180 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
7666, 75jca 514 1 (𝜑 → (𝐶 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1082   = wceq 1531  wex 1774  wcel 2108  {cab 2797  wne 3014  wral 3136  wrex 3137  Vcvv 3493  wss 3934  c0 4289   class class class wbr 5057  supcsup 8896  cr 10528   < clt 10667  cle 10668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-sup 8898  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865
This theorem is referenced by:  upbdrech2  41564
  Copyright terms: Public domain W3C validator