Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upbdrech2 Structured version   Visualization version   GIF version

Theorem upbdrech2 39938
 Description: Choice of an upper bound for a possibly empty bunded set (image set version). (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
upbdrech2.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
upbdrech2.bd (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
upbdrech2.c 𝐶 = if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < ))
Assertion
Ref Expression
upbdrech2 (𝜑 → (𝐶 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝐶))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑦,𝐵,𝑧   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝐵(𝑥)   𝐶(𝑥,𝑦,𝑧)

Proof of Theorem upbdrech2
StepHypRef Expression
1 upbdrech2.c . . 3 𝐶 = if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < ))
2 iftrue 4200 . . . . . 6 (𝐴 = ∅ → if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < )) = 0)
3 0red 10154 . . . . . 6 (𝐴 = ∅ → 0 ∈ ℝ)
42, 3eqeltrd 2803 . . . . 5 (𝐴 = ∅ → if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < )) ∈ ℝ)
54adantl 473 . . . 4 ((𝜑𝐴 = ∅) → if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < )) ∈ ℝ)
6 simpr 479 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 = ∅) → ¬ 𝐴 = ∅)
76iffalsed 4205 . . . . 5 ((𝜑 ∧ ¬ 𝐴 = ∅) → if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < )) = sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < ))
86neqned 2903 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴 ≠ ∅)
9 upbdrech2.b . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
109adantlr 753 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
11 upbdrech2.bd . . . . . . . 8 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
1211adantr 472 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴 = ∅) → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
13 eqid 2724 . . . . . . 7 sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < ) = sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < )
148, 10, 12, 13upbdrech 39935 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 = ∅) → (sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < ) ∈ ℝ ∧ ∀𝑥𝐴 𝐵 ≤ sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < )))
1514simpld 477 . . . . 5 ((𝜑 ∧ ¬ 𝐴 = ∅) → sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < ) ∈ ℝ)
167, 15eqeltrd 2803 . . . 4 ((𝜑 ∧ ¬ 𝐴 = ∅) → if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < )) ∈ ℝ)
175, 16pm2.61dan 867 . . 3 (𝜑 → if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < )) ∈ ℝ)
181, 17syl5eqel 2807 . 2 (𝜑𝐶 ∈ ℝ)
19 rzal 4181 . . . 4 (𝐴 = ∅ → ∀𝑥𝐴 𝐵𝐶)
2019adantl 473 . . 3 ((𝜑𝐴 = ∅) → ∀𝑥𝐴 𝐵𝐶)
2114simprd 482 . . . 4 ((𝜑 ∧ ¬ 𝐴 = ∅) → ∀𝑥𝐴 𝐵 ≤ sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < ))
22 iffalse 4203 . . . . . . . 8 𝐴 = ∅ → if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < )) = sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < ))
231, 22syl5eq 2770 . . . . . . 7 𝐴 = ∅ → 𝐶 = sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < ))
2423breq2d 4772 . . . . . 6 𝐴 = ∅ → (𝐵𝐶𝐵 ≤ sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < )))
2524ralbidv 3088 . . . . 5 𝐴 = ∅ → (∀𝑥𝐴 𝐵𝐶 ↔ ∀𝑥𝐴 𝐵 ≤ sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < )))
2625adantl 473 . . . 4 ((𝜑 ∧ ¬ 𝐴 = ∅) → (∀𝑥𝐴 𝐵𝐶 ↔ ∀𝑥𝐴 𝐵 ≤ sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < )))
2721, 26mpbird 247 . . 3 ((𝜑 ∧ ¬ 𝐴 = ∅) → ∀𝑥𝐴 𝐵𝐶)
2820, 27pm2.61dan 867 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
2918, 28jca 555 1 (𝜑 → (𝐶 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝐶))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1596   ∈ wcel 2103  {cab 2710  ∀wral 3014  ∃wrex 3015  ∅c0 4023  ifcif 4194   class class class wbr 4760  supcsup 8462  ℝcr 10048  0cc0 10049   < clt 10187   ≤ cle 10188 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126  ax-pre-sup 10127 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-op 4292  df-uni 4545  df-br 4761  df-opab 4821  df-mpt 4838  df-id 5128  df-po 5139  df-so 5140  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-er 7862  df-en 8073  df-dom 8074  df-sdom 8075  df-sup 8464  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382 This theorem is referenced by:  ssfiunibd  39939
 Copyright terms: Public domain W3C validator