MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgredgpr Structured version   Visualization version   GIF version

Theorem upgredgpr 26929
Description: If a proper pair (of vertices) is a subset of an edge in a pseudograph, the pair is the edge. (Contributed by AV, 30-Dec-2020.)
Hypotheses
Ref Expression
upgredg.v 𝑉 = (Vtx‘𝐺)
upgredg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
upgredgpr (((𝐺 ∈ UPGraph ∧ 𝐶𝐸 ∧ {𝐴, 𝐵} ⊆ 𝐶) ∧ (𝐴𝑈𝐵𝑊𝐴𝐵)) → {𝐴, 𝐵} = 𝐶)

Proof of Theorem upgredgpr
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 upgredg.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 upgredg.e . . . . 5 𝐸 = (Edg‘𝐺)
31, 2upgredg 26924 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐶𝐸) → ∃𝑎𝑉𝑏𝑉 𝐶 = {𝑎, 𝑏})
433adant3 1128 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐶𝐸 ∧ {𝐴, 𝐵} ⊆ 𝐶) → ∃𝑎𝑉𝑏𝑉 𝐶 = {𝑎, 𝑏})
5 ssprsseq 4760 . . . . . . . . . 10 ((𝐴𝑈𝐵𝑊𝐴𝐵) → ({𝐴, 𝐵} ⊆ {𝑎, 𝑏} ↔ {𝐴, 𝐵} = {𝑎, 𝑏}))
65biimpd 231 . . . . . . . . 9 ((𝐴𝑈𝐵𝑊𝐴𝐵) → ({𝐴, 𝐵} ⊆ {𝑎, 𝑏} → {𝐴, 𝐵} = {𝑎, 𝑏}))
7 sseq2 3995 . . . . . . . . . 10 (𝐶 = {𝑎, 𝑏} → ({𝐴, 𝐵} ⊆ 𝐶 ↔ {𝐴, 𝐵} ⊆ {𝑎, 𝑏}))
8 eqeq2 2835 . . . . . . . . . 10 (𝐶 = {𝑎, 𝑏} → ({𝐴, 𝐵} = 𝐶 ↔ {𝐴, 𝐵} = {𝑎, 𝑏}))
97, 8imbi12d 347 . . . . . . . . 9 (𝐶 = {𝑎, 𝑏} → (({𝐴, 𝐵} ⊆ 𝐶 → {𝐴, 𝐵} = 𝐶) ↔ ({𝐴, 𝐵} ⊆ {𝑎, 𝑏} → {𝐴, 𝐵} = {𝑎, 𝑏})))
106, 9syl5ibr 248 . . . . . . . 8 (𝐶 = {𝑎, 𝑏} → ((𝐴𝑈𝐵𝑊𝐴𝐵) → ({𝐴, 𝐵} ⊆ 𝐶 → {𝐴, 𝐵} = 𝐶)))
1110com23 86 . . . . . . 7 (𝐶 = {𝑎, 𝑏} → ({𝐴, 𝐵} ⊆ 𝐶 → ((𝐴𝑈𝐵𝑊𝐴𝐵) → {𝐴, 𝐵} = 𝐶)))
1211a1i 11 . . . . . 6 ((𝑎𝑉𝑏𝑉) → (𝐶 = {𝑎, 𝑏} → ({𝐴, 𝐵} ⊆ 𝐶 → ((𝐴𝑈𝐵𝑊𝐴𝐵) → {𝐴, 𝐵} = 𝐶))))
1312rexlimivv 3294 . . . . 5 (∃𝑎𝑉𝑏𝑉 𝐶 = {𝑎, 𝑏} → ({𝐴, 𝐵} ⊆ 𝐶 → ((𝐴𝑈𝐵𝑊𝐴𝐵) → {𝐴, 𝐵} = 𝐶)))
1413com12 32 . . . 4 ({𝐴, 𝐵} ⊆ 𝐶 → (∃𝑎𝑉𝑏𝑉 𝐶 = {𝑎, 𝑏} → ((𝐴𝑈𝐵𝑊𝐴𝐵) → {𝐴, 𝐵} = 𝐶)))
15143ad2ant3 1131 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐶𝐸 ∧ {𝐴, 𝐵} ⊆ 𝐶) → (∃𝑎𝑉𝑏𝑉 𝐶 = {𝑎, 𝑏} → ((𝐴𝑈𝐵𝑊𝐴𝐵) → {𝐴, 𝐵} = 𝐶)))
164, 15mpd 15 . 2 ((𝐺 ∈ UPGraph ∧ 𝐶𝐸 ∧ {𝐴, 𝐵} ⊆ 𝐶) → ((𝐴𝑈𝐵𝑊𝐴𝐵) → {𝐴, 𝐵} = 𝐶))
1716imp 409 1 (((𝐺 ∈ UPGraph ∧ 𝐶𝐸 ∧ {𝐴, 𝐵} ⊆ 𝐶) ∧ (𝐴𝑈𝐵𝑊𝐴𝐵)) → {𝐴, 𝐵} = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wrex 3141  wss 3938  {cpr 4571  cfv 6357  Vtxcvtx 26783  Edgcedg 26834  UPGraphcupgr 26867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-fz 12896  df-hash 13694  df-edg 26835  df-upgr 26869
This theorem is referenced by:  nbupgr  27128  nbumgrvtx  27130  upgriswlk  27424  upgrwlkupwlk  44022
  Copyright terms: Public domain W3C validator