MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrres Structured version   Visualization version   GIF version

Theorem upgrres 27090
Description: A subgraph obtained by removing one vertex and all edges incident with this vertex from a pseudograph (see uhgrspan1 27087) is a pseudograph. (Contributed by AV, 8-Nov-2020.) (Revised by AV, 19-Dec-2021.)
Hypotheses
Ref Expression
upgrres.v 𝑉 = (Vtx‘𝐺)
upgrres.e 𝐸 = (iEdg‘𝐺)
upgrres.f 𝐹 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
upgrres.s 𝑆 = ⟨(𝑉 ∖ {𝑁}), (𝐸𝐹)⟩
Assertion
Ref Expression
upgrres ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → 𝑆 ∈ UPGraph)
Distinct variable groups:   𝑖,𝐸   𝑖,𝑁
Allowed substitution hints:   𝑆(𝑖)   𝐹(𝑖)   𝐺(𝑖)   𝑉(𝑖)

Proof of Theorem upgrres
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 upgruhgr 26889 . . . . . 6 (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph)
2 upgrres.e . . . . . . 7 𝐸 = (iEdg‘𝐺)
32uhgrfun 26853 . . . . . 6 (𝐺 ∈ UHGraph → Fun 𝐸)
4 funres 6399 . . . . . 6 (Fun 𝐸 → Fun (𝐸𝐹))
51, 3, 43syl 18 . . . . 5 (𝐺 ∈ UPGraph → Fun (𝐸𝐹))
65funfnd 6388 . . . 4 (𝐺 ∈ UPGraph → (𝐸𝐹) Fn dom (𝐸𝐹))
76adantr 483 . . 3 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → (𝐸𝐹) Fn dom (𝐸𝐹))
8 upgrres.v . . . 4 𝑉 = (Vtx‘𝐺)
9 upgrres.f . . . 4 𝐹 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
108, 2, 9upgrreslem 27088 . . 3 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → ran (𝐸𝐹) ⊆ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})
11 df-f 6361 . . 3 ((𝐸𝐹):dom (𝐸𝐹)⟶{𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2} ↔ ((𝐸𝐹) Fn dom (𝐸𝐹) ∧ ran (𝐸𝐹) ⊆ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
127, 10, 11sylanbrc 585 . 2 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → (𝐸𝐹):dom (𝐸𝐹)⟶{𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})
13 upgrres.s . . . 4 𝑆 = ⟨(𝑉 ∖ {𝑁}), (𝐸𝐹)⟩
14 opex 5358 . . . 4 ⟨(𝑉 ∖ {𝑁}), (𝐸𝐹)⟩ ∈ V
1513, 14eqeltri 2911 . . 3 𝑆 ∈ V
168, 2, 9, 13uhgrspan1lem2 27085 . . . . 5 (Vtx‘𝑆) = (𝑉 ∖ {𝑁})
1716eqcomi 2832 . . . 4 (𝑉 ∖ {𝑁}) = (Vtx‘𝑆)
188, 2, 9, 13uhgrspan1lem3 27086 . . . . 5 (iEdg‘𝑆) = (𝐸𝐹)
1918eqcomi 2832 . . . 4 (𝐸𝐹) = (iEdg‘𝑆)
2017, 19isupgr 26871 . . 3 (𝑆 ∈ V → (𝑆 ∈ UPGraph ↔ (𝐸𝐹):dom (𝐸𝐹)⟶{𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
2115, 20mp1i 13 . 2 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → (𝑆 ∈ UPGraph ↔ (𝐸𝐹):dom (𝐸𝐹)⟶{𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
2212, 21mpbird 259 1 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → 𝑆 ∈ UPGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wnel 3125  {crab 3144  Vcvv 3496  cdif 3935  wss 3938  c0 4293  𝒫 cpw 4541  {csn 4569  cop 4575   class class class wbr 5068  dom cdm 5557  ran crn 5558  cres 5559  Fun wfun 6351   Fn wfn 6352  wf 6353  cfv 6357  cle 10678  2c2 11695  chash 13693  Vtxcvtx 26783  iEdgciedg 26784  UHGraphcuhgr 26843  UPGraphcupgr 26867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-fv 6365  df-1st 7691  df-2nd 7692  df-vtx 26785  df-iedg 26786  df-uhgr 26845  df-upgr 26869
This theorem is referenced by:  finsumvtxdg2size  27334
  Copyright terms: Public domain W3C validator